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Foreword

In our world of ever-increasing Internet connectivity, there is an on-going threat of

intrusion, denial of service attacks, or countless other abuses of computer and net-

work resources. In particular, these threats continue to persist even on account of

the flaws of current commercial Intrusion Detection Systems (IDS). These flaws are

the result of the concurrence of several shortcomings such as excessive resource

requirements, limited precision, lack of flexibility, and scope limitation. The aim

of this book is to present the contributions made by both academia and industry to

thwart those threats. In particular, this book includes a selection of the best research

outcomes on intrusion detection of the Italian FIRB WEB-MINDS project (Wide

scalE, Broadband MIddleware for Network Distributed Systems), plus several in-

ternational contributions.

The goal of an Intrusion Detection System (IDS) is to monitor network assets

in order to detect misuse or anomalous behavior. Several types of IDS have been

proposed in the literature, and they can be divided into two broad classes, i.e., net-

work based (NIDS) and host based (HIDS). The former tries to detect any attempt

to subvert the normal behavior of the system by analyzing the network traffic, while

the latter is intended to act as the last line of defense. The host based IDS strives

to detect intrusions by analyzing the events on the local system where the IDS is

being run. Host based IDSs are generally classified into two categories: anomaly

detection and misuse detection. Misuse detection systems try to identify behavior

patterns that are characteristic of intrusions, but this can be difficult if an attack ex-

hibits novel behavior, as it may when attackers develop new strategies. On the other

hand, anomaly detectors try to characterize the normal behavior of a system so that

any deviation from that behavior can be labeled as a possible intrusion. Anomaly

detection assumes that misuse or intrusions are strongly correlated to abnormal be-

havior exhibited by either the user or by the system itself. Anomaly detection ap-

proaches must first determine the normal behavior of the object being monitored,

then use deviations from this baseline to detect possible intrusions.

Unlike the behavior of a human user or the behavior of network traffic, the be-

havior of a program ultimately stems from a series of machine instructions. Thus,

intrusions can be detected as deviations from normal program behavior. The ques-

v
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tion, however, is how to characterize normal program behavior so as to minimize

both false positives (false alarms caused by legitimate changes in program behav-

ior) and false negatives (missed intrusions caused by attackers that mimic benign

users).

As can be seen from the short description of the main issues in IDS, the area is

far from being fully investigated. Furthermore, there is a need to develop new ap-

proaches that could bridge the gap between the flexibility and the precision required

by IDS and current solutions. In particular, this book collects several contributions

from the research units that are active in the area of Intrusion Detection. The objec-

tives of this book are threefold: to provide an up-date on the state of the art of the

research in this area; to indicate possible research directions, and to make practi-

tioners and the industry aware of the most promising IDS technologies.

Contributions and roadmap

Chapter 1 deals with data showing that payload-based approaches are becom-

ing the most effective methods to detect attacks. The chapter describes some ap-

proaches for Anomaly-based network detection systems (NIDSs) which focus on

packet headers, payload, or a combination of both. The results of the proposed ap-

proaches are also discussed. This chapter paves the way for further studies into this

segment of interest.

Chapter 2 proposes a methodology for the synthesis of the behavior of an ap-

plication program in terms of the set of system calls invoked by the program. The

methodology is completely automated except for the description of the high level

specification of the application program which is demanded of the system analyst.

The technology (VSP/CVS) employed for such synthesis minimizes the efforts re-

quired to code the specification of the application, thus making the proposal viable

for industrial products as well.

Chapter 3 introduces a sophisticated mechanism that can be used to model pro-

files i.e., Hierarchical Hidden Markov Models. Consequently, abstract process be-

havior corresponds to probabilistic regular expressions. A learning algorithm built

over this abstraction mechanism is proposed; such an algorithm can automatically

infer a profile from a set of traces of the process behavior. This chapter pushes for-

ward the application of sophisticated statistical tools and shows promising research

directions.

Chapter 4 stems from the observation that the multiple, possibly complementary

security devices that are used to defend against computer and network attacks, and

that include intrusion detection systems (IDSs) and firewalls are widely deployed to

monitor networks and hosts, may flag alerts when suspicious events are observed.

Alert correlation focuses on discovering the existing relationships among individual

alerts; this chapter gives an overview of current alert correlation techniques. Finally,

it also introduces privacy issues in the IDS field.

Chapter 5 describes recent research on attack graphs that represent the known

attack sequences which can be used by attackers to penetrate computer networks.

This chapter will show how attack graphs can be used to compute actual sets of

hardening measures for the safety of given critical resources. Note that the degree
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of safety that is provided within the approach proposed in this chapter is tunable and

guaranteed.

Chapter 6 introduces a new mechanism for adapting the security policy of an

information system according to the threat it receives, and hence its behavior and

the services it offers. The proposed mechanism bridges the gap between preventive

security technologies and intrusion detection, and builds upon existing technologies

to facilitate formalization on one hand, and deployment on the other hand.

Lastly, Chapter 7 identifies the fundamental requirements that must be satisfied to

protect hosts and routers from any form of Distributed DoS (DDoS). Then, a frame-

work that satisfies most of the identified requirements is proposed. It appropriately

combines Intrusion Detection and Reaction techniques, and comprises a number of

components that actively co-operate to effectively react to a wide range of attacks.

Roma, January 2008

Roberto Di Pietro Luigi V. Mancini

Dipartimento di Matematica Dipartimento di Informatica

Università di Roma Tre Università di Roma “La Sapienza”

L.go S. Leonardo Murialdo, 1 Via Salaria, 113

00146 Roma, Italy 00198 Roma, Italy

ricerca.mat.uniroma3.it/users/dipietro www.di.uniroma1.it/mancini
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Approaches in Anomaly-based Network

Intrusion Detection Systems

Damiano Bolzoni and Sandro Etalle

Abstract Anomaly-based network intrusion detection systems (NIDSs) can take

into consideration packet headers, the payload, or a combination of both. We argue

that payload-based approaches are becoming the most effective methods to detect at-

tacks. Nowadays, attacks aim mainly to exploit vulnerabilities at application level:

thus, the payload contains the most important information to differentiate normal

traffic from anomalous activity. To support our thesis, we present a comparison be-

tween different anomaly-based NIDSs, focusing in particular on the data analyzed

by the detection engine to discover possible malicious activities. Furthermore, we

present a comparison of two payload and anomaly-based NIDSs: PAYL and POSEI-

DON.

1 Introduction

Network intrusion detection systems (NIDSs) are considered an effective second

line of defense against network-based attacks directed at computer systems [1, 2],

and – due to the increasing severity and likelihood of such attacks – are employed

in almost all large-scale IT infrastructures [3].

There exist two main types of intrusion detection systems: signature-based (SBS)

and anomaly-based (ABS). SBSs (e.g. Snort [4, 37]) rely on pattern-matching tech-

niques: they contain a database of signatures of known attacks and try to match these

signatures against the analyzed data. When a match is found, an alarm is raised. On

the other hand, ABSs (e.g. PAYL [6]) first build a statistical model describing the

normal network traffic, then flag any behaviour that significantly deviates from the

model as an attack.

University of Twente,
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Intuitively speaking, anomaly-based systems have the advantage that (unlike

signature-based systems) they can detect zero-day attacks, since novel attacks can

be detected as soon as they take place. On the other hand, ABSs (unlike SBSs) re-

quire a training phase and a careful setting of the detection threshold (more about

this later), which makes their deployment more complex.

Contribution

In this paper, we discuss anomaly-based systems, focusing in particular on a specific

kind of them: the ABSs payload-based. We argue that payload-based systems are

particularly suitable to detect advanced attacks, and we describe in detail the most

prominent and the most recent of them: respectively Wang and Stolfo’s PAYL [6]

and our POSEIDON [7].

2 Anomaly-Based Intrusion Detection Systems

In this section, we present the basic working of anomaly-based systems, and we

explain the different kinds of ABSs existing. The thesis we try to substantiate here

is that, because of the kind of attacks that are carried out nowadays, packed-based

and payload-based systems are becoming the most interesting kind of ABS.

Anomaly-based NIDSs can be classified according to:

1. the underlying algorithm they use,

2. whether they analyze the features of each packet singularly or of the whole

connection, and

3. the kind of data they analyze. In particular, whether they focus on the packet

headers or on the payload.

Regarding the underlying algorithm, Debar et al. [8, 2] define four different

possible approaches, but only two of them have successfully employed in the last

decade: algorithms based on statistical models and those based on neural networks.

The former is the most widely used: according to Debar et al. [8] more than 50%

of existing ABSs is statistic-based. In these systems, the algorithm (during the so-

called training phase) first builds a statistical model of the – legitimate, attack-free

– network behaviour; later (in the detection phase), the input data is compared to the

model using a distance function, and when the distance measured exceeds a given

threshold, the input is considered anomalous, i.e., it is considered an attack. ABSs

based on neural networks work in a similar way (they also have a training phase,

a detection phase and a threshold), but instead of building a statistical model, they

train a neural network which is then in charge of recognizing regular traffic from

anomalous one. Good training is of crucial importance for the effectiveness of the

system: in particular, the data used in the training phase should be (at least in prin-

ciple) as attack-free as possible: training data must reflect as much as possible the
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normal system data flow, not including malicious activity. Furthermore, the training

phase should be long enough to allow the system to build a faithful model: a too

short training phase could lead to a (too) coarse data classification, which – in the

detection phase – translates into flagging legitimate traffic too often as anomalous

(false positives).

Concerning feature (b) the distinction one has to make is between packet-

oriented and connection-oriented ABSs. A packet-oriented system uses a single

packet as minimal information source, while a connection-oriented system consid-

ers features of the whole communication before establishing whether it is anoma-

lous or not. Theoretically, a connection-oriented system could use as input the con-

tent (payload) of a whole communication (allowing – at least in principle – a more

precise analysis), but this would require a long computational time, which would se-

riously limit the throughput of the system. In practice, connection-oriented systems

typically take into account the number of sent/received bytes, the duration of the

connection and layer-4 protocol used. According to Wang and Stolfo’s benchmarks

[6], payload-based ABSs do not show a sensible increase in performance when they

also reconstruct the connection, instead of just considering the packets in isolation.

In practice, most ABSs are packet-oriented (see also Table 1).

The last, more practically relevant distinction we can make is between header-

based and payload-based system. Header-based systems consider only packet head-

ers (layer-3 and, if present, layer 4 headers) to detect malicious activities; payload-

based systems analyze the payload data carried by the layer-4 protocol; there are

also hybrid systems which mix information gathered observing packet headers and

(if present) layer-4 payload data. We are going to elaborate on this distinction in

the rest of this section. Before we do so, we want to present a table reporting some

of the most important ABSs: we select the systems which have been benchmarked

with public data sets (either DARPA 1998 [9] or DARPA 1999 [10] data sets, which

contain a full dump of the packets, or the KDD 99 [11] data set, which contains only

connection meta data).

iSOM [12] uses a one-tier architecture, consisting of a Self-organizing Map [13],

to detect two attacks in the 1999 DARPA data set: the first attack against the SMTP

service and the other attack against the FTP service. Intel information from the

connection meta data once it has been reassembled. PHAD [14] combines 34 dif-

ferent values extracted from the packet headers. MADAM ID [15] extracts infor-

mation from audit traffic and builds classification models (specifically designed for

certain types of intrusion) using data mining techniques. The system indicated by

SSAD [16] (Service Specific Anomaly Detection) combines different information

such as type, length and payload distribution (computing character frequencies and

aggregating then them into six groups) of the request. PAYL [6] and POSEIDON [7]

detect anomalies only looking at the full payload. Table 1 summarizes the properties

of some ABSs.
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System Detection Engine Semantic Level Analyzed Data

iSOM NN PO + CO Meta data

IntelligentIDS NN CO Meta data

PHAD S PO H

MADAM ID S CO Meta data

SSAD S PO H + P

PAYL S PO P

POSEIDON NN + S PO P

Table 1 Anomaly-based systems: NN stands for Neural Networks, S for Statistical model, PO
is Packet-Oriented while CO is Connection-Oriented, H and P stand for Headers and Payload
respectively

2.1 Payload-based vs header-based approaches

We now elaborate the differences in effectiveness between payload-based and

header-based systems. We begin by showing some examples of attacks that can be

detected by the systems of one kind, but not by the system of the other kind.

Attacks detectable by header-based systems

Example 0.1. The teardrop exploit [17] is a remote Denial of Service attack that

exploits a flaw in the implementation of older TCP/IP stacks: some implementations

of the IP fragmentation re-assembly code on these platforms do not properly handle

overlapping IP fragments. Figure 1 shows how the attacks takes place: the attacker

sends fragmented packets forged so that they overlap each other when the receiving

host tries to reassemble them. If the host does not check the boundaries properly, it

will try to allocate a memory block with a negative size, causing a kernel panic and

crashing the OS.

IDSs can find this attack only by looking for two specially fragmented IP data-

grams, analyzing the headers. This attack exploits a vulnerability at the network

layer.

Example 0.2. The Land attack [17] is a remote Denial of Service attack that is ef-

fective against some older TCP/IP implementations: the attack involves sending a

spoofed TCP SYN packet (connection initiation) with the same source and desti-

nation IP address (the target address) and the same (open) TCP port as source and

destination.

Some implementations cannot handle this theoretically impossible condition,

causing the operating system to go into a loop as it tries to resolve a repeated con-

nections to itself. IDSs detect this attack by looking at packet headers, since TCP

SYN segments do not carry any payload. This attack exploits a vulnerability at the

transport layer.
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(a) Correct case

(b) Incorrect case

Fig. 1 A correct and incorrect case of fragment management by the network layer

Attacks detectable by payload-based systems

Example 0.3. SQL injection is a technique that exploits vulnerabilities of (web-

based) applications which are interfaced to an SQL database: if the application does

not sanitize potentially harmful characters first [18], an intruder can inject an SQL

query in the database, and force the database to output sensitive data (e.g. user pass-

words and personal details) from database tables, without being authorized. SQL

Injections are considered a serious threat and are constantly listed in the “Top Ten

Most Critical Web Application Security Vulnerabilities” [19] by “The Open Web

Application Security Project”.

For instance, the following HTTP request is actually a well-known attack [20]

against the Content Management System (CMS) PostNuke [21] that can be used to

get hold of the user passwords:

http://[target]/[postnuke_dir]/modules.php?op=modload&

name=Messages&file=readpmsg&start=0%20UNION%20SELECT%20

pn_uname,null,pn_uname,pn_pass,pn_p

When such an attack is carried out successfully, the output (a database table) is

significantly different from the HTML page usually rendered. This attack exploits a

vulnerability at the application layer.

Example 0.4. The PHF attack [22] exploits a badly written CGI script to execute

commands with the privilege level of the HTTP server user. Any CGI program

which relies on the function escape shell cmd() may be vulnerable: this vulnera-

bility is manifested by the phf program that is distributed with the example code for

the Apache web server.
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http://[target]/cgi-bin/phf?Qalias=x\%0A/bin/cat\%20/etc/passwd

The issued request will provide the attacker with the list of system users.

To detect a PHF attack, an intrusion detection system can monitor HTTP requests

for invocations of the phf command with arguments that specify commands to be

run. This attack exploits a vulnerability at the application layer.

Some Conclusions

The above examples reflect the unsurprising fact that header-based systems are more

suitable to detect attacks directed at vulnerabilities of the network and transport

layers; we can also include in this category all the probing techniques used before

a real attack takes place (port/host scanning). On the other hand, payload-based

systems are more suitable to identify attacks trying to exploit vulnerabilities at the

application level, where sensitive data are stored and most of the systems can be

subverted.

Here, we must take notice of the trend that shows that this second kind of attack is

increasingly gaining importance: this is due both to the large success of web-based

services, and to the fact that attacks at network and transport layers are becoming

rare. Because of this, we believe that payload-based system will be increasingly

useful in the future. We believe that this trend not only favors payload-based IDS

wrt header-based ones, but also anomaly-based systems wrt signature-based ones

(we are going to elaborate on this in the conclusions).

We should not forget, however, that payload-based NIDSs cannot function prop-

erly in combination with applications or application protocols (e.g. SSH and SSL)

which apply data encryption, unless the encryption key is provided. A possible so-

lution to this makes use of a host-based component to access data once they have

been decrypted, but this causes an overhead on the monitored host. This problem

is going to grow in importance when IPv6 will gradually replace IPv4: in fact, one

of the main design issues of IPv6 is the authentication and confidentiality of data

(through cryptography).

As we mentioned before, header-based approaches alone do not represent a valid

solution to detect modern attacks. In this case, we believe that further research on

approaches based on the analysis of connection meta data (connection duration,

sent/received bytes, etc.), which are not affected by cryptographic content, should

be conducted to verify their application in real environment, since they show to be

quite effective in detecting malicious activity with standard data set such as DARPA

1999 and KDD 99.

3 Setting up an ABS

As we have seen, to determine whether a certain input is anomalous or not, an ABS

compares it to the model it has: if the distance between some function of the input



Approaches in Anomaly-based NIDS 7

and the model exceeds a given threshold, the input is considered anomalous. This

shows that the quality of the model and the value of the threshold have a direct

influence on the effectiveness of the ABS. Both the model and the threshold are

determined during the system setup (though the threshold could be refined succes-

sively). In the rest of this section we elaborate on these two crucial aspects.

Before we do so, we define that the effectiveness of a NIDS is determined by its

completeness and its accuracy.

• completeness = TP/(TP+FN)
• accuracy = TP/(TP+FP)

Here, TP is the number of true positives, FN is the number of false negatives and

FP is the number of false positives raised during a given time frame.

The number of false positives per hour determines the workload of IT personnel:

with a hundred thousands input packets per hour (which is a reasonable figure for a

web server), a false positive rate of 1% still determines a thousand false positive per

hour, which is more than a typical company can afford to handle. When a system

raises too many false positives, then system managers tend to ignore alerts raised.

As a matter of fact, a high false positive rate is generally cited as one of the main

disadvantages of ABSs.

3.1 Building the Model

The model an ABS refer to should reflect the behaviour of the system in absence of

attacks, otherwise the ABS may fail to recognize an attack as such. Because of this,

the ABS should be trained with a clean data set. However, obtaining such a data set

is difficult in practice: a casual dump of network traffic is likely to be noisy, i.e., to

contain attacks.

The standard way to deal with this is by cleaning the data set by manual inspec-

tion. This relies completely on the expertise of the IT personnel which must analyze

a large amount of data. Clearly, this approach it is labour intensive, also because the

model of the ABS needs to be updated regularly to adapt to environment changes.

The manual inspection can be aided by an automatic inspection using a signature-

based IDS, which can pre-process the training data and discover well-known attacks

(e.g. web-scanners, old exploits, etc.). A signature-based IDS however will not de-

tect all attacks in the data, leaving the training set with a certain amount of noise.

Nevertheless, we believe that it is possible to clean automatically the data set

in such a way that the resulting model is a faithful representation of the legitimate

network traffic. Intuitively, we apply an anomaly-based intrusion detection algo-

rithm in which the threshold is set in such a way that we are sure of catching all

attacks: this is possible because noise typically forms a small percentage of the total

data [23], moreover, its content is typically very different from the content of regu-

lar data [24, 25]. The fact that we eliminate also a percentage of the legitimate data

with them is – at this stage – not a serious concern.
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In our experience clustering techniques from data mining can be quite useful to

obtain a good training set. Clustering is the classification of similar objects into dif-

ferent groups, or more precisely, the partitioning of a data set into subsets (clusters),

so that the data in each subset (ideally) shares some common trait, often according

to a defined distance measure. Past research applies this concept to detect network

attacks [26], but because of the intrinsic limitations of the classification algorithms,

it does not achieve a high detection rate. There exists a large number of clustering

algorithms which deal with different data types: in our case, we can use clustering

algorithms to classify the training data and then disregard the data belonging to the

clusters which are not dense enough to be considered significant for the training the

model.

3.2 Setting the threshold

The value of the threshold has an obvious and direct impact on the accuracy and

completeness: a low threshold yields a high number of alarms, and therefore a low

false negative rate, but a high false positive rate. On the other hand, a high threshold

yields a low number of alarms in general (therefore a high number of false negatives,

but a low number of false positives). Therefore, setting the threshold requires skill:

its “optimal” value depends on environment monitored and on the distribution of

the training data.

In our ATLANTIDES system [27] we introduce a simple heuristics to set the

threshold value when using a noisy data set: our experiments show that setting the

threshold at 3tmax
4 , usually yields reasonably good results; here tmax is the maxi-

mum distance between the analyzed data and the model observed during the training

phase.

4 PAYL and POSEIDON

In this section, we present PAYL and POSEIDON, the first is recognized as the most

prominent payload-based anomaly-based NIDS, POSEIDON is the improvement on

PAYL we have developed.

4.1 PAYL

PAYL (Wang and Stolfo [6]) is a system based on a 2-step algorithm. First, pack-

ets are classified according to the payload length, then an n-gram [28] analysis is

applied to the payload. PAYL works as follows (see Appendix 6.1 for the pseudo-

code).
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Fig. 2 PAYL architecture

During the training phase, the training set T is split into a number of disjoint

subsets Tl jk, where each Tl jk contains the packets of length l, destination IP address

j and TCP port k. Then PAYL creates statistical models Ml jk of each Tl jk by first

carrying out n-gram analysis [28] of size 1 on each packet of Tl jk, and then in-

crementally storing in Ml jk a feature vector containing the average byte frequency

distribution together with the variance value of each frequency.

During the detection phase, the same values are computed for incoming packets

and then compared to model values: a significant difference from the norm produces

an alert. To compare models, PAYL uses a simplified version of the Mahalanobis

distance, which has the advantage of taking into account not only the average value

but also its variance and the covariance of the variables measured.

The maximum amount of space required by PAYL is: p∗ l ∗k, where p is the total

number of ports monitored (each host may have different ports), l is the length of the

longest payload (payload length can vary between 0 and 1460 in a Local Area Net-

work infrastructure based on Enthernet) and k is a constant representing the space

required to keep the mean and the variance distribution values for each payload byte

(PAYL uses a fixed value of 512). To reduce the otherwise large number of models

to be computed, PAYL collapses similar models. After comparing two neighbour-

ing models using the Manhattan distance, if the distance is smaller than a given

threshold t, models are merged: the means and variances are updated to produce a

new combined distribution. This process is repeated until no more models can be

merged. Experiments with PAYL show [6] that a reduction in the number of model

of up to a factor of 16 can be achieved.

4.2 POSEIDON

The Achille’s heel of PAYL lies in the classification phase: a good classification

algorithm should produce clusters with high intra-class similarity and high inter-
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Fig. 3 POSEIDON architecture

class dissimilarity. Using the payload length information as primary method to di-

vide packets into clusters, similar payloads could be classified in different clusters

because they present a small difference in their length; on the other hand, dissimi-

lar payloads could be classified in the same cluster because they present the same

length. This can affect negatively the subsequent n-gram analysis.

To solve this problem, we designed POSEIDON. The design goal was to ob-

tain a good – unsupervised – classification method for network packets (which are

high-dimensional data). This is a typical clustering problem which can be tackled

using neural networks in general and Self-Organizing Maps (SOM) [13] in partic-

ular. SOMs have been widely used in the past both to classify network data and to

find anomalies. in POSEIDON, we use them for pre-processing.

The POSEIDON architecture combines a SOM with a modified PAYL algorithm

and works as follows. The SOM is used to pre-process each packet, afterwards

PAYL uses the classification value given by the SOM instead of the payload length.

Instead of using model Mi jk, PAYL uses the model Mn jk where j and k are the usual

destination address and port and n is the classification derived from the neural net-

work. Then, mean and variance values are computed as usual.

Having added a SOM to the system we must allow for both the SOM and PAYL

to be trained separately. Regarding resource consumption, we have to revise the

required amount of space to: p ∗ n ∗ k, where the new parameter n indicates the

amount of SOM network nodes. Our experiments show that POSEIDON allows to

reduce the number of models needed (wrt PAYL) by a factor of 3 while achieving a

better accuracy and completeness.

How the SOM works

Self-organizing maps are topology-preserving single-layer maps. SOMs are suitable

to analyze high-dimensional data and belong to the category of competitive learning

networks [13]. Nodes are also called neurons, to remind us of the artificial intelli-
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gence nature of the algorithm. Each neuron n has a vector of weights wn associated

to it: the dimension of the weights arrays is equal to the length of longest input data.

These arrays (also referred as reference vectors) determine the SOM behaviour. Ap-

pendix 6.2 reports the SOM pseudo-code.

To accomplish the classification, SOM goes through three phases: initialization,

training and classification.

Initialization

First of all, some system parameters (number of nodes, learning rate and radius) are

determined by e.g. the IDS technician. The number of nodes directly determines the

classification given by the SOM: a small network will classify different data inputs

in the same node while a large network will produce a too sparse classification.

Afterwards, the array of node weights is initialized, usually with random values (in

the same range of input values).

Training

The training phase consists of a number of iterations (also called epochs). At each

iteration one input vector x is compared to all neuron weight arrays wn with a dis-

tance function: the most similar node (also called best matching unit, BMU) is then

identified. After the BMU has been found, the neighbouring neurons and the BMU

itself are updated. The following update parameters are used: the neighbourhood is

governed by the radius parameter (r) and the magnitude of the attraction is affected

by the learning rate (α).

During this phase, the map tends to converge to a stationary distribution, which

approximates the probability density function of the high-dimensional input data.

As the learning proceeds and new input vectors are given to the map, the learning

rate and radius values gradually decrease to zero.

Classification

During the classification phase, the first part of the training phase is repeated for

each sample: the input data is compared to all the weight arrays and the most similar

neuron determines the classification of the sample (but weights are not updated). The

winning neuron is then returned.

Conclusions

Our approach to designing a payload-based ABS involves the combination of two

different techniques: a self-organizing map and the PAYL architecture. We modify
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the original PAYL to take advantage of the unsupervised classification given by the

SOM, which then functions as pre-processing stage.

We benchmark our system using the DARPA 1999 data set [10]: this standard

data set is used as a reference by a number of researchers (e.g. [14, 12, 6]), and

offers the possibility of comparing the performance of various IDSs. Experiments

show that our approach achieves a better completeness and accuracy than the orig-

inal PAYL algorithm: Table 2 reports the results for the four most representative

protocols (FTP, Telnet, SMTP and HTTP) inside the data set. Moreover we observe

a reduction of models used by PAYL by a factor of 3 when taking advantage of the

SOM classification (payload length can vary between 0 and 1460 in a Local Area

Network Ethernet-based, while the SOM neural network used in our experiments

has less than one hundred nodes).

PAYL POSEIDON

Number of models used 4065 1622

HTTP
DR 89,00% 100,00%
FP 0,17% 0,0016%

FTP
DR 95,50% 100,00%
FP 1,23% 0,93%

Telnet
DR 54,17% 95,12%
FP 4,71% 6,72%

SMTP
DR 78,57% 100,00%
FP 3,08% 3,69%

Overall DR with FP < 1% 58,8% (57/97) 73,2% (71/97)

Table 2 Comparison between PAYL and POSEIDON; DR stands for detection rate (complete-
ness), while FP is the false positive rate (accuracy)

5 Conclusions

This paper makes a reasoned case for anomaly payload-based network intrusion

detection systems.

Header-Based vs Payload-Based

We have argued that header-based approaches are useful in detecting principally at-

tacks at network level, and that of most modern remote attacks target vulnerabilities

at the application layer: thus, we can no longer rely solely on header-based ap-

proaches. Moreover, firewalling systems can easily detect (and discard) well-known

malicious packets as well. The fact that header-based approaches manage to achieve

high detection rates when benchmarked using the DARPA 1999 data set is – as ex-

plained by Mahoney and Chan [29] – often due to the fact that it is possible to tune
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an IDS which uses some attributes – specifically: remote client address, TTL, TCP

options and TCP window size (these present a small range in the DARPA simula-

tion, but have a large and growing range in real traffic) – in such a way that it scores

particularly well on this data set. Because most of the attacks to the application

significantly differ in content from legitimate traffic (while they are similar when

considering header attributes), a payload-based approach is necessary to detect ma-

licious activities.

Signature-based vs Anomaly-Based

The fact that that modern attacks are usually directed to weaknesses of the appli-

cation rather than weaknesses of the underlying system has another important con-

sequence: as we mentioned in the introduction, next to anomaly-based intrusion

detection systems, there exist also signature-based systems. These system rely on

a set of pre-defined signatures (typically defined by the NIDS manufacturer and

updated regularly via Internet). Because of the ad-hoc nature of attacks directed at

applications, in which it is often possible to modify the syntax of an attack without

changing its semantics, signature-based system are becoming easier to circumvent

than anomaly-based systems. For instance, due to the high level of polymorphisms

presented by SQL Injection attacks, it is impossible to produce few generic signa-

tures to detect them, and most of these attacks will go unnoticed by a SBS.

We believe that the next generation IDS architectures will have to combine

signature-based and anomaly-based approaches, as well as network-based with host-

based systems: these architectures, supported by adequate correlation techniques,

will combine the advantages offered by each approach, improving at the same time

the overall completeness and accuracy.

6 Appendix

6.1 PAYL algorithm

DATA TYPE

feature vector = RECORD [
mean = array [1..256] of Reals,

/* average byte frequency */
stdDev = array [1..256] of Reals

/* standard deviation of each */
/* byte frequency */

]

/* Defining Ml jk model */
model = RECORD [

ip ∈ N, /* destination host address */
sp ∈ N, /* destination service port */
l ∈ N, /* payload length */

fv : feature vector

]

PAYLOAD = array [1..l] of [0..255]

DATA STRUCTURE

M = set of finite models

threshold ∈ R

/* numeric value used for anomaly */
/* detection given by user */

TRAINING PHASE

INPUT:
ip : IP address ∈ N

sp : service port ∈ N

l : payload length

x : PAYLOAD

for each m ∈ M do
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if (m.ip = ip and m.sp = sp and

m.l = l) then

m.fv.update(x)
/* update byte frequency */
/* distributions */

end if

done(for)

TESTING PHASE

INPUT:
ip : IP address ∈ N

sp : service port ∈ N

l : payload length

x : PAYLOAD

OUTPUT:
isAnomalous : BOOLEAN

/* is the packet anomalous ? */

dist := +∞
isAnomalous := FALSE

for each m ∈ M do

if (m.ip = ip and m.sp = sp and

m.l = l) then

dist := m.fv.getDistance(x)
/* get the distance between input */
/* data and associated model */

end if

done(for)

if (dist ≥ threshold) then

isAnomalous := TRUE

end if

return isAnomalous

6.2 SOM algorithm

DATA TYPE

RR = [0.0..255.0]
/* Reals (Double) between 0.0 and 255.0 */

l = length of the longest packet payload

PAYLOAD = array [1..l] of [0..255]

DATA STRUCTURE

N = non− empty finite set of neurons

for each n ∈ N let

wn := array [1..l] of RR

/* array of weights associated */
/* to each neuron n */

α0 ∈ R

/* Initial learning rate */
α := α0

/* Current learning rate */
r0 ∈ R

/* Initial radius */
r := r0

/* Current radius */
τ ∈ N

/* Number of training epochs */
k ∈ N

/* Smoothing factor */

INIT PHASE

for each n ∈ N

for i := 1 to l

wn[i] := random(RR)
/* Initialize with values in RR */

TRAINING PHASE

INPUT:
xt : PAYLOAD

for t := 1 to τ

/* Find winning neuron */
win dist := +∞
win neuron := n0

for each n ∈ N do

dist := manhattan dist(xt,wn)
if (dist ≤ win dist) then

win dist := dist

win neuron := n

end if

done(for)

/* Process neighbouring neurons */
Nn = {n ∈ N | trig dist(n,win neuron) ≤ r}

for each nn ∈ Nn

for i := 1 to l

wnn [i] := wnn [i]+α ∗ (wnn [i]− xt[i])

α := α0 ∗
k

k+t

r := r0 ∗
τ−t

τ

done(for)

CLASSIFICATION PHASE
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INPUT:
x : PAYLOAD

OUTPUT:
win neuron ∈ N

win dist := +∞
dist := win dist

win neuron := n0

for each n ∈ N do

dist := manhattan dist(x,wn)
if (dist ≤ win dist) then

win dist := dist

win neuron := n

end if

done(for)

return win neuron
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Formal Specification for Fast Automatic

Profiling of Program Behavior

Roberto Di Pietro, Antonio Durante, and Luigi.V. Mancini

Abstract This paper illustrates a methodology for the synthesis of the behavior of

an application program in terms of the set of system calls invoked by the program.

The methodology is completely automated, with the exception of the description

of the high level specification of the application program which is demanded to the

system analyst. The technology employed (VSP/CVS) for such synthesis minimizes

the efforts required to code the specification of the application. The methodology we

propose has been applied to several daemons; as a case study, we discuss it in details

to the Post Office Protocol, the ipop3d daemon. Though the methodology is inde-

pendent from the intrusion detection tool adopted, the results have been employed

to configure the REMUS intrusion detection system and are shown in this paper.

1 Introduction

Nowadays computer systems work in highly dynamic and distributed environments

and require the protection mechanisms to prevent intentional or unintentional vio-

lation to the security policies. Often the attackers are able to circumvent the access

control mechanisms exploiting the applications flaws. As an example, in many cases

the attackers tend to hijack the control of privileged processes, such as the daemon

processes. A well-known family of this kind of attack is called buffer overflow attack

[2].

Our proposed methodology is aimed at mapping the normal behavior of an appli-

cation program onto its allowed system calls, thus enabling the detection of attacks

Roberto Di Pietro
Università di Roma Tre, Dipartimento di Matematica, L.go S. leonardo Murialdo n. 1, 00146 -
Roma, Italy, e-mail: dipietro@mat.uniroma3.it

Antonio Durante · Luigi V. Mancini
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that attempt to hijack the execution of privileged processes the application is possi-

bly composed of.

The methodology we describe starts from a high level description of the daemon,

such as an IETF RFC [12] and derives the set of the system calls that can be invoked

by the daemon, during its normal execution. Note that the generated system calls are

specific for the particular implementation of the daemon the proposed methodology

is applied to. For instance, consider an FTP daemon that receives USER/PASS re-

quests; while processing these requests, the daemon could execute different kinds of

system calls depending on its implementation. To perform authentication, the FTP

daemon may need to read a security-sensitive file (using regular I/O system calls),

or it may access the same sensitive file via memory mapping (using the mmap system

call), or it may access the sensitive file via NIS (using socket connects, reads, and

writes), etc. Note that the particular set of system calls to perform the FTP authen-

tication is chosen by the programmer while implementing the daemon. Hence, we

do not try to synthesize the allowed system calls of all the possible implementations

for a given specification, but we consider a specific implementation of the daemon

that will run on the specific system under consideration.

In this paper, we assume that the specific implementation of the daemon to which

the proposed methodology is applied to does not contain malicious code, though it

should not be necessarily trusted. In other word, the daemon could contain potential

bugs in the implementation of the high level specification (e.g. bugs that could be

exploited by a buffer overflow attack), but should not contain arbitrary malicious

operations (e.g. a malicious programmer adds a trojan code which creates a root

account in the password file even if such operation is not strictly required by the

high level specification of the particular daemon).

The main novelty of our methodology is that it represents a first attempt for

the automatic definition of the daemon normal behavior profile starting from its

interface definition. To derive a daemon normal profile in terms of system calls, we

specify the daemon interface using a technology that has been successfully applied

to protocol design and analysis [3, 4]. The specification produced can be used for

every version of daemon having the same interface, also if it runs on different a OS.

The main contributions of this paper are: a methodology to speed-up the syn-

thesis of the normal behavior of an application program. This methodology differs

from that based on the source code analysis, since our approach synthesizes the pro-

gram behavior starting from both a high-level specification document, such as an

IETF RFC, and a specific implementation. An implicit advantage of not relying on

source code, is that our approach is applicable even if the source code is not avail-

able for analysis. Moreover, the process is automated, with the only exception of

the specification phase, which is a high level human-activity. Further, to show the

effectiveness of such a methodology, we used it to configure a particular anomaly

based IDS prototype: REMUS [1].

The paper is organized as follows: next section summarizes the related works

in the field. Section 3 illustrates the proposed methodology. Section 4 offers a case

study, applied to the ipop3d daemon, while Section 5 presents a description of how

the methodology can be used to configure the REMUS prototype. In Section 6 some
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concluding remarks and further research directions are exposed. Finally, the ap-

pendix reports the system calls intercepted as a result of the work developed in

Section 5, and the VSP specification of the Postgres daemon. This paper is a revised

and extended version of the work previously reported in [5].

2 Related works

There are several IDS proposed in literature that can be divided into two broad

classes: network based and host based IDS. The former tries to detect the attempts

to subvert the normal behavior of the system, analyzing the traffic of the network.

The latter is intended to perform as last line of defense.

The host based IDS strives to detect intrusions analyzing the behavior of the

system on which the IDS is run. The host based IDS can be further distinguished

into three categories: (1) anomaly detection, (2) misuse detection, (3) specification-

based. In particular, the main characterization of the three methods can be sum-

marized as follows: (1) the anomaly detection method is based on revealing the

behavior of the system that differs from a profile that depicts the normal behavior

of the system that is automatically updated; (2) the misuse detection tries to classify

all the possible known attacks to the system creating an association between each

attack and a sort of signature. Recognizing such a signature on the system, raises an

alarm; (3) the specification based approach tries to specify the intended behavior of

the monitored program. Even slight variation from this behavior, raises an alarm.

The performance of these approaches is measured in terms of: (1) false posi-

tive, e.g. an alarm raised in correspondence to a regular situation; (2) false negative,

e.g. the IDS did not raise an alarm while an intrusion occurred. The fundamental

characteristic of the proposed approaches consist in defining the system behavior

in terms of the sequences of the system calls invoked by the monitored applica-

tion [10]. However, the approaches differ since the system behavior can be modeled

in different way, e.g. formal specification [21], neural networks [9], sequences of

pattern [14]. The strength and the weaknesses of each of the approach can be classi-

fied as follow:(1) the strength of the anomaly detection approaches is based on the

capacity of the algorithm to generalize the model of the normal behavior of the mon-

itored program. The higher the ability of generalization of the algorithm, the higher

the probability to individuate new typology of attack. The drawback of such an ap-

proach is that when the IDS experiences for the first time a new behavior, it raises an

alarm, which may be a false positive; (2) using the misuse detection approach, it is

difficult to individuate new kinds of attack since this approach detects only the old

ones, so false negative can occur. However, when an alarm is raised, this is because

a signature has been detected, and therefore a false positive cannot occur. Note that

the set of signatures could include ambiguous patterns that can be generated by an

attacker as well as a legitimate user; (3) the specification techniques try to overcome

the deficiencies of the anomaly detection and misuse detection approaches, defining
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the intended behavior of the controlled program. Any behavior that differs from the

expected one is marked as illegal and an alarm is raised.

The specification-based technique should have the precision of the misuse detec-

tion technique and also the ability of detecting new kinds of attack as the anomaly

detection technique. However, on one hand, specification based techniques require

a good level of technical competence: indeed, a good knowledge of the operation

performed by the application program is needed because such a knowledge must

be translated in a specification of the expected behavior in a format comprehensi-

ble to the IDS. On the other hand, the IDS based on anomaly and misuse detection

technique are respectively self-calibrating or just calibrated. Indeed, automatic tech-

niques that lead the learning of the IDS have been proposed [20, 26, 10]. A more

feasible specification based approach is that proposed in [7]. Using this approach it

is possible to implement several kinds of security mechanisms. Moreover, the de-

scribed approach gives the possibility of combining in different ways various IDS

mechanism.

The network intrusion-detection systems (NIDSs), i.e. [24], often report a mas-

sive number of simple alerts of low-level security-related events. Many of these

alerts are logically involved in a single multi-stage intrusion incident and a secu-

rity officer often wants to analyze the complete incident instead of each individual

simple alert.

[15] proposes a well-structured model that abstracts the logical relation between

the alerts in order to support automatic correlation of those alerts involved in the

same intrusion. The basic building block of the model is a logical formula called a

capability. We use capability to abstract consistently and precisely all levels of ac-

cesses obtained by the attacker in each step of a multistage intrusion. We then derive

inference rules to define logical relations between different capabilities. Based on

the model and the inference rules, we have developed several novel alert correlation

algorithms and implemented a prototype alert correlator.

Another network based intrusion detection is proposed in [22]. The network base

intrusion detection consists in a distributed multiagent intrusion detection system

(IDS) architecture, which attempts to provide an accurate and lightweight solution

to network intrusion detection by tackling issues associated with the design of a

distributed multiagent system, such as poor system scalability and the requirements

of excessive processing power and memory storage. The proposed IDS architecture

consists of (i) the Host layer with lightweight host agents that perform anomaly

detection in network connections to their respective hosts, and (ii) the Classification

layer whose main functions are to perform misuse detection for the host agents,

detect distributed attacks, and disseminate network security status information to

the whole network.

Among other approaches that cannot be classified in the exposed taxonomy, it is

worth noting [19, 28], which try to implement a Mandatory Access Control policy.

If the security policy defined is too restrictive, the process has less privilege than the

minimal ones needed to execute its functionality and then the system cannot work

properly, requiring the intervention of the system administrator. However, such an
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approach detects all the attempts to bypass the assigned privileges.

Attackers often try to evade an intrusion detection system (IDS) when launching

their attacks. There have been several published studies in evasion attacks i.e. [29],

some with available tools, in the research community as well as the hackers com-

munity. Some payload-based network anomaly detection systems can be evaded by

a polymorphic blending attack (PBA). The main idea of a PBA is to create each

polymorphic instance in such a way that the statistics of attack packet(s) match the

normal traffic profile. [25], present a formal framework for the open problem: given

an anomaly detection system and an attack, can one automatically generate its PBA

instances? The framework not only expose how the IDS can be exploited by a PBA

but also suggest how the IDS can be improved to prevent the PBA.

We now focus on the REMUS prototype [1]. Its design is based on the analysis of

critical system calls. In particular, the overhead introduced by REMUS with respect

to others IDS is negligible. The system calls have been partitioned in level of threat:

the system calls of level 1 are those utilized from the hacker to gain complete control

of the system. REMUS checks the system call of level 1, if the invoking process is

a root daemon or if it is setuid to root; indeed, only in this case the attacker can gain

access to the system as a privileged user. System calls belonging to other levels of

threat are discarded by the IDS since they cannot lead to a subversion of a privileged

process. REMUS allows a goods security level while intercepting only the 10% of

the total number of system calls performed during execution.

3 Methodology

The methodology we propose takes in input a formal specification of daemon A, and

returns as output a subset of the system calls that a specific program implementation

of A is allowed to invoke.

Throughout this paper, we apply our methodology to the RFC1939 (ipop3d) [12],

as an example. Note that any other specification of a daemon, with the level of de-

tail of an RFC, could have been adopted as the starting point of our methodology.

However, we have based our discussion on RFC since we intend to address the

implementation of any secure Internet servers, which are mainly based on the exe-

cution of standard daemons, whose expected behavior is described through RFCs.

In the following, we detail the steps of the methodology and subsequently develop

a simple example.

The first step of the methodology consists in modeling the daemon behavior as

a that can recognize any session of commands execution of the daemon A, triggered

by a client. This step requires a human intervention to express the RFC specification

of the daemon A with state transition semantic (an automaton). The states of the

FSM are derived from the RFC, and the transitions between states are the possible

commands that the daemon can be requested to execute.
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The second step consists in formalizing the FSM using the VSP language [3].

This step must be carried out by the system analyst too.

In the third step, the VSP specification is compiled using the CVS compiler

[3], detailed in Section 4.4. In particular, the result of the compilation produces a

Security Process Algebra (SPA) [6] that we call FSM1.

The fourth step of the methodology consists in exploring the FSM1 to obtain the

finite set of command sequences that may be invoked by an execution of the daemon.

A commands execution set accepted by FSM can be equivalently represented as a

subset of the command sequences produced by FSM1. Thus, executing the set of

command sequences accepted by the FSM1 will invoke the same set of system calls

invoked by the daemon when executing the command sequences recognized by the

FSM. We assume that any command implementation invokes the same set of system

calls regardless of the value and of the size on input parameters.

In the fifth step, the sequences of commands produced by CVS are translated,

by a simple parsing algorithm, in the sequences of commands executable by a tool

called ILSC (Invocation of Legal Sequences of Commands). The ILSC executes

such command sequences on a specific implementation of the daemon. During this

step the module REMUS is loaded in configuration mode to intercept and log all

the system calls invoked by the daemon. Then, the logged system calls are used to

update the ACL.

Note that the first and second steps above are carried out by the system analyst,

while the others are automated. In the following, we illustrate the whole sequence

of steps in the case study.

4 Case Study

4.1 POP3 commands

When the ipop3d daemon service is started, it listens on TCP port 110 [12]. When

a client host wishes to make use of the service, it establishes a TCP connection

with the server host. When the connection is established, the ipop3d server sends

a greeting. The client and the ipop3d server daemon then exchange commands and

responses until the connection is closed or aborted.

The commands of the post office protocol consist of a keyword followed by one

or zero arguments. The response of the ipop3d daemon consists of a success indica-

tor possibly followed by additional information. There are currently two indicators:

positive (”+OK”) and negative (”-ERR”). A post office protocol session progresses

through a number of states during its lifetime. Once the TCP connection has been

opened and the ipop3d server has sent the greeting command, the session enters the

AUTHORIZATION state. In this state, the client must identify itself to the ipop3d

server. Once the client has been successfully identified, the server acquires the re-

sources associated with the client’s maildrop, and the session enters the TRANS-
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ACTION state. In this state, the client requests actions to the ipop3d server. When

the client has finished its transactions, the session enters the UPDATE state.

In this state, the ipop3d server releases any resource acquired during the TRANS-

ACTION state and says goodbye. The TCP connection is then closed. For a com-

plete description of the post office protocol see RFC1939 [12].

4.2 The FSM (step 1)

To model the interactions between a client and the ipop3d we use a Finite State

Machine, FSM.

We define the FSM, where the transitions represent the commands invoked by a

client and the states are those reached by the daemon as a consequence of such an

interaction. Figure 1 shows the FSM derived from the RFC for the ipop3d daemon.

In each state an error can occur due to a bad input command, that is BAD INP. The

errors can be divided in two kinds, as reported in Table 1.

Table 1 Possible errors recognized by the ipop3d daemon

Error Description

command error the name of the command does not coincide with any-
one of those specified in the RFC, given the current
state of execution of the daemon.

parameter error the parameter is omitted if required or it is wrong: out
of range, mismatch.

Each time the ipop3d daemon receives a bad input command (BAD INP), the

software send back to the client as output an error message err-“error message”.

When the client sends a “well formed” command (a command and its parameters

are well formed if they respect the RFC specification) the daemon returns as output

an OK+ “message”. The daemon terminates its execution when it reaches one of the

two possible final states: UPDATE (U) or LOGOUT (L).

In Figure 1, the label TRANS INP represents a set S={STAT, NOOP, LAST,

RSET, LIST, DELE, RETR} of post office protocol commands that a client can in-

dependently invoke while ipop3d runs in the TRANSACTION state (T in the Figure

1).

We call trace a finite sequence of commands accepted by the FSM. If we con-

sider the set of all the traces recognized by the FSM, they correspond to the set of

all possible different sequences of commands invoked by a client and executed by

the ipop3d daemon. Note that there is a correspondence between each command

invocation and a set (possibly empty) of system calls executed at kernel level.
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A1 A2 T U

L

BAD_INP BAD_INP BAD_INP

QUIT QUIT TRANS_INP

QUITUSER name PASS ****

Fig. 1 The FSM of the ipop3d daemon.

4.3 VSP specification for ipop3d (step 2)

To obtain the FSM1, the system analyst has to specify the daemon using the VSP

language. VSP is a value-passing language like CCS value passing [18] that allows

protocol specification. A VSP specification is translated in a Security Process Al-

gebra (SPA) [6] specification using the CVS compiler. The process of describing

an Internet daemon through VSP is an extension of the use for which the VSP was

initially intended for, that is VSP was developed to describe protocols [3, 4]. In gen-

eral, a protocol consists of a set of messages (that contain a set of values) exchanged

by two or more entities to reach a common goal (e.g. authentication). Indeed, a dae-

mon is specified in VSP via a set of messages exchange. A daemon can accept a

command and give as output: (1) an error message if the command is not well

formed; (2) an ok message if the command is well formed. Therefore, describing a

daemon through messages is a task that can be achieved if we employ messages that

contain as parameters: the name of the command that the daemon has to execute and

the parameters of the invoked command.

Given the idea of how it is possible to employ the VSP to describe the behavior

of a daemon, we detail below the four steps of the procedure that leads the system

analyst to the specification in VSP of the FSM:

• definition of the commands and the values of the commands parameters; in this

step the system analyst has to synthesize the set of commands that a daemon

can accept and the values that the command’s parameter can assume during a

daemon normal session. Table 2 describes the first step of the VSP specification.

• definition of the messages accepted by the daemon; as above expressed, the

messages accepted by the daemon contains the name of the command that the

daemon has to execute and the values of its parameters;

• declaration and definition of the body of the daemon process; this part specifies

the “body” of the daemon server. The body of a process consists of a sequence

of messages. There are two kind of messages: (1) the input messages that cor-

respond to a command invocation; (2) the output messages, which correspond

to the output of the ipop3d daemon. An output message can assume two values:

(a) OK; (b)err-, according to the fact that the received command is well formed

or not. In Table 4.3 the messages of the ipop3d daemon. It is not necessary to
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VSP Description

#Names * VSP section name

* POP3 server: commands grouped according
* to the state of execution and parameters number.

CmdA:USER,PASS,WC; * commands executable in the Authorization State

CmdT1:STAT,NOOP,LAST,RSET,WC; * commands executable in the Transaction state
* with 0 parameter

CmdT2:LIST,WC; * commands executable in the Transaction State
* with 1 optional parameter

CmdT3:DELE,RETR,WC; * commands executable in Transaction State
* with 1 parameter

CmdU:QUIT,WC; * commands executable in the Update State

* WC = wrong command in a state

* Set of parameter values of the POP3 commands.

Agent:Sam,Null; * user name

Pass:bianco,Null; * Passwords

Msg:1,2,3,4,Null; * message ids

* NULL : null parameter value

Table 2 Command and parameters definition

VSP Description

#ActionDec * action containing the command type and the parameter type
* that the POP3 server executes

cmd 1 (CmdA,Agent) * action for the execution of a command of type CmdA
* and parameter type Agent

cmd 2 (CmdA,Pass) * action for the execution of a command of type CmdA
* and parameter type Pass

cmd 31 (CmdT1) * action for the execution of a command of type CmdT1

cmd 32 (CmdT2,Msg) * action for the execution of a command of type CmdT2
* and parameter type Msg

cmd 33 (CmdT3,Msg) * action for the execution of a command of type CmdT3
* and parameter type Msg

cmd 4 (CmdU) * action for the execution of a command of type CmdU

OK+() * action that communicates the good result of a command execution

err-() * action that communicates the bad result of a command execution

Sayonara() * action that communicates the session ending

Table 3 POP3 messages

specify the body of the client process, as usually required by the VSP specifica-

tion, because the specification of the behavior of the daemon is comprehensive

of all possible interactions that the daemon itself can perform with any client.

Table 4 reports the VSP specification of the ipop3d daemon.

• definition of a generic session; it is sufficient to consider a single instance of the

daemon VSP process because the VSP coding of the daemon process generates

all the sequences of the messages that could be executed during a session with a

generic client. Table 5 reports the VSP invocation of a POP3 session performed

by the daemon ipop3d.
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Table 4 The VSP specification of POP3

#ProcessesDef POP3ser(u:Agent)
Var
Agent:name;
CmdA:c1,c2;
CmdT1:c31;
CmdT2:c32;
CmdT3:c33;
CmdU:c4;
Pass: p;
Msg:m,m1,m2;
Begin

cmd 1(c1,name).
if ((c1=USER) & (name=Sam))

’OK+().
cmd 2(c2,p).
if ((c2=PASS) & (p=bianco))

’OK+().
cmd 31(c31).
if (c31!WC)

’OK+().
cmd 32(c32,m1).
if (c32!WC)

’OK+().
cmd 33(c33,m2).
if ((c33!WC)& (m2!Null))

’OK+().
cmd 4(c4).
if (c4=QUIT)

’Sayonara().
else

’err-().
endif

else
’err-().

endif
else

’err-().
endif

else
’err-().

endif
else

’err-().
endif

else
’err-().

endif
End
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#Session *invocation
POP3ser(sam)
#RestrictionOn
channel(cmd 1,cmd 2,cmd 3,cmd 31,cmd 4)

Table 5 the session invocation for VSP daemon

4.4 Compiling VSP (step 3)

The CVS compiler takes in input the VSP specification of the daemon and generates

the FSM1. The body of the VSP process is made up of a linearly ordered sequence

of input and output messages. The FSM1 obtained using the CVS compiler can be

modeled as a tree. The corresponding tree model for the generation of the FSM1

can be obtained according to the rules in Figure 2.

TreeGeneration (node *m, CartesianP *P)

Begin

If (m==root) {
GenerateSPA(m);

m=m->next;

} else If (m==InputMessage) {
If (checkInBound (m)) {

GenerateSPA(m);

m=m->next;

TreeGeneration(m,P);

} else {
while (P!=Null) {

P = GenerateCartesianP(m);

TreeGeneration(m,P);

}
} else if (m==OutMessage) {
if (checkInBound (m)) {

GenerateSPA(m);

m=m->next;

TreeGeneration(m,P);

} else {
print(err);

exit

}
} else if (m==Null)

exit;

End

Fig. 2 The SPA generation code.

In the routine for the generation of the FSM1 code we call m the message that

we want to translate in SPA code. P is a possible instance of the message m. Each

time the routine generates a FSM1 message, the routine moves to the next message
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via the statement m=m→ next. When a message is translated from the VSP to the

FSM1, we say that a VSP message is expanded in a FSM1 messages. The routine in

Figure 2 works as follows:

1. the root of the tree is the FSM1 name of the process;

2. if the next examined message m is an input message, this message must consist

of a set of parameters, say par1,par2,..,parK usually not instanced. The routine

checks out if the current message has parameters that can assume only one pos-

sible value with the function checkInBound. If this is not the case, the CVS com-

piler, starting from this message, generates the Cartesian product of the value

of the command parameters. Each element of the Cartesian product constitutes

a different son of the root if the expanded message is the first. Otherwise, the

generated messages are the sons of the previous expanded message;

3. if the examined message m is an output message, then its parameters are usu-

ally instanced. If the parameters are bounded, that is they assume just a value,

the compiler generates a son of the previous expanded message. Such a node

is labeled with the output message and the actual values of the parameters. If

the parameters are not instanced, that is they assume more than one value, an

exception is raised and the routine is stopped;

4. the routine terminates when there are no more messages to expand.

Note that the representation of FSM1 is indeed a tree, since it does not contain

neither links to other nodes at the same level, nor links to the ancestor. Moreover,

each node has one parent only. Finally, there cannot be isolated messages, since the

compiler always links a generated node to one and exactly one of the previously

generated nodes. Therefore, we are assured that the generated FSM1 graph is a tree.

4.5 Visiting the FSM1 (step 4)

Producing all the traces of the FSM1 consists of a depth first search in the process

algebra tree produced by the CVS compiler. We use the algorithm GetTraces which

takes as input: the first line of the SPA code firstline; the root node, e.g. the name of

the SPA process firstnode; and an emptybuffer that will contain the execution traces,

e.g. the command sequences. Note that the algorithm GetTraces follows a classical

depth-first visit, getting all the paths root-leaf of the FSM1.

4.6 Executing Traces (step 5)

The traces produced by the GetTraces algorithm are translated in command se-

quences that can be invoked by the ILSC module. The ILSC executes such com-

mand sequences on a specific implementation of the daemon (that we want to pro-

file) when the IDS is loaded in the OS kernel.
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5 Using the Methodology to Configure REMUS

To exemplify the application of our methodology to an IDS based on the analysis of

the system calls invoked by a program, we have used the methodology to configure

REMUS. In REMUS, the system calls that are considered critical for the security

of the system, (see Table 6), are intercepted by a LINUX kernel module specifically

designed for this purpose. This module operates as reference monitor that denies or

allows the execution of a particular system call invoked by a daemon or by a setuid

software program. The decision of the reference monitor is based on a kernel data

structure, the ACL, that maintains the set of authorized system calls and their relative

parameters. The content of such a data structure can be seen as a classification of

the behavior of a program.

Table 6 Critical system calls

system calls dangerous parameter

chmod, fchmod a system file or a directory

chown, fchown, lchown a system file or a directory

execve an executable file

mount on a system directory

rename, open, mknod a system file

link, symlink, unlink a system file

setuid, setresuid, setfsuid,

setreuid UID set to zero

setgroups, setgid, setfsgid,

setresgid, setregid GID set to zero

init module modules not in /lib/modules

During the execution of the ILSC, the module REMUS stores the system calls

invoked by the daemon in a file with the following format: system call name - pa-

rameters - invoking program. The first field consists of the name of the system call

that the application program can invoke; the second field consists of the argument

values of the system call; the third field is the name of the monitored application

program. The content of this file is subsequently used to update the ACL. A schema

of the methodology applied to the REMUS IDS is showed in Figure 3.

The first two steps in Figure 3 are carried out by the system analyst while the

others are automatic. During the fifth step the module REMUS is loaded in config-

uration mode to intercept and log all the system calls invoked by the ILSC. Then,

the logged system calls are used to update the ACL. After the fifth step completes,

the system is ready to provide its intended services. During this production mode,

REMUS allows a system call execution if and only if the invoking process and the

value of the arguments comply with the contents of the ACL previously build in

the configuration mode. We could have both false positive and false negative. As
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Fig. 3 The manual and automated steps of the methodology.

for false positive: the set of system calls intercepted by REMUS can be an under-

estimated approximation of the normal behavior of the analyzed daemon, because

there could be sequence of command not specified in the VSP (due to system ana-

lyst error). As for false negative, REMUS does not take in account the order whom

the system calls has to be invoked, for instance a mimicry attack could have success

[27].

However, the majority of penetration techniques that allows an attacker to hijack

the control of a privileged process will be blocked by the IDS configured in this way

(buffer overflow technique is among the blocked ones).

5.1 Results

The described methodology has been applied to a set of daemons. We report the

results in Table 7. From the above table, it is remarkable that: (a) only a limited

number of daemons requires the execution of critical system calls; (b) the number

of critical system calls intercepted, for those daemons that invoke them, is quite

low. These findings can be explained with the growing attention that has been paid

to security. Indeed, a basic step to minimize the possibility of system subversion

is to reduce the number of critical system calls invoked by daemons in privileged

mode.

It is worth noting that the objective of the REMUS prototype is to prevent the

subversion of the system. Henceforth, if a non-super user application is compro-

mised, this is not detected by REMUS. This point is clearly stated by the REMUS

developers [1] and leveraged throughout this paper. However, this assumption may
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Table 7 Methodology results

OS Daemon FSM1 sessions Number of Critical Sys Calls

red hat 7.2 Qmail 1.03 (smtp service) 5922 0

mandrake 9.0 wu-sftpd 2.62 6014 0

mandrake 9.0 vs-ftpd 1.1.3 4890 0

mandrake 9.0 Postgres 77272 0

mandrake 9.0 sendmail 8.11.6 5348 5

mandrake 9.0 postfix 4920 21

redhat 7.3 pop3d 5230 3

raise some objection in adopting REMUS together with the proposed methodology;

for instance, the subversion of the Postgres daemon, run by a non-privileged user,

could possibly compromise a sensitive Database while not compromising the entire

system. This point can be addressed intercepting the critical system calls the Post-

gres daemon invokes when run with normal user privileges. The normal behavior

profile obtained can thus be used to prevent the daemon subversion also when it is

run as a non-privileged process. Note that this operation allows a complete re-use of

the VSP daemon specification.

In Appendix 7 we report: (1) the name of the system calls intercepted and the

appropriate commands to be added to the ACL; (2) the VSP specification of the

Postgres daemon. In particular, note that the specification of the Postgres daemon

is compact and almost self-explanatory. To specify the daemon behavior according

to the VSP language took one day only. This should testify the feasibility of the

proposed methodology.

6 Concluding remarks

In this paper, we have drawn a methodology to derive, starting from a high level

specification of an application program, the set of the system calls an application

can invoke. Our methodology does not need to access the source code, thus, it can

be adopted even in those environment in which only the executable is available.

Moreover, the methodology is completely independent from the IDS tool adopted.

Note that when a new release of a daemon implementation becomes available, it is

necessary only to execute the ILSC to upgrade the ACL (step 5), while preserving

the efforts spent in the steps 1-4 of the methodology. Finally, except for the first two

step of the methodology described in Section 3, which are at a high level of design,

the process is completely automatic.

The adoption of a specific technology (VSP/CVS), which is internally based on

automaton representation, allows us to obtain a good profile of the normal behavior

of the application program.

We tested the proposed methodology to derive the normal behavior profile of

a set of daemons critical for the deployment of a secure WEB server. The results
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we obtain encourage us to explore the program normal behavior space using the

specification driven methodology we propose. As a future work we plan to extend

the methodology in order to deal with the so called evasion attacks [29].

7 Appendix

In the following we report two test cases. The first is related to the pop3d, sendmail

and postfix daemon; the second is related to the Postgres daemon. The first test case

shows the effectiveness of the proposed approach used with the REMUS IDS. The

second test case is intended to apply our methodology to a more complex daemon.

7.1 The critical system calls

Table 8 reports the critical system calls intercepted by REMUS, set in DEBUG

mode, when the sessions produced by the CVS compiler are executed, for the pop3d

the sendmail and postfix daemon.

The second column reports as first field the system call name, then the system

call parameters, and finally the name of the program that could invoke that system

call.

7.2 Postgres VSP Specification

Table 9 reports the VSP specification of the Postgres daemon version 7.2. Once

compiled CVS produce a .trc file, which comprises 77272 Postgres sessions. The

sessions executed, with REMUS set in DEBUG mode, did not produce any critical

system calls. Hence, the Postgres daemon either does not execute critical system

calls or when it execute them, it runs without privileged rights.
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Table 10 Postgres VSP specification: first agent

first(s1:Agent)
Var
CmdDB: c1 a;
CmdTB1: c21 a;
CmdTB2: c22 a;
CmdTB3: c23 a;
CmdU: c3 a;
Namedb: DBase;
Nametb: tab 1a;
Field: cp1 a, cp2 a, cp3 a;
Options: opz1 a, opz2 a, opz3 a;
OptionsBy: opzby 1a;
ValuesID: v 1a;
ValuesSurn: surn 1a;
ValuesDN: DN 1a;
Parameter: p 1a;
Condition: cond 1a;

cmd 1(c1 a,DBase).
if ((c1 a=CREATEDB) & (DBase=DataBase))

’OK+().
cmd 21(c21 a, tab 1a, cp1 a, opz1 a, cp2 a, opz2 a, cp3 a, opz3 a).

’OK+().
cmd 22(c22 a, tab 1a, v 1a, surn 1a, DN 1a).

’OK+().
cmd 23(c23 a, p 1a, tab 1a, cond 1a, opzby 1a).
if ((c23 a=SELECT) & (tab 1a=Table) & (p 1a!NULL))

’OK+().
cmd 3(c3 a).
if (c3 a=QUIT)

’OK+().
else

’err-().
endif

else
’err-().

endif
else

’err-().
endif

else
’err-().

endif
else

’err-().
endif

End

if ((c22 a=INSERT) & (tab 1a=Table) & (v 1a!NULL) & (surn 1a!NULL) & (DN 1a!NULL))

if ((c21 a= CREATETABLE) & (tab 1a=Table) & (cp1 a!cp2 a) & (cp2 a!cp3 a) & (cp1 a!cp3 a))
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Table 11 Postgres VSP specification: second agent and session invockation

second(s2:Agent)
Var
CmdDB: c1 b;
CmdTB1: c21 b;
CmdTB2: c22 b;
CmdTB3: c23 b;
CmdU: c3 b;
Nametb: tab 2b;
Field: cp1 b, cp2 b, cp3 b;
Options: opz1 b, opz2 b, opz3 b;
OptionsBy: opby 2b;
ValuesID: v 2b;
ValuesSurn: surn 2b;
ValuesDN: DN 2b;
Parameter: p 2b;
Condition: cond 2b;
Begin

cmd 21(c21 b, tab 2b, cp1 b, opz1 b, cp2 b, opz2 b, cp3 b, opz3 b).

OK+().
cmd 22(c22 b, tab 2b, v 2b, surn 2b, DN 2b).

’OK+().
cmd 23(c23 b, p 2b, tab 2b, cond 2b, opby 2b).
if ((c23 b=SELECT) & (tab 2b=Table) & (p 2b!NULL))

’OK+().
cmd 3(c3 b).
if (c3 b=QUIT)

’OK+().
else

’err-().
endif

else
’err-().

endif
else

’err-().
endif

else
’err-().

endif
End
#Session *invocation
first(A)
second(B)
#RestrictionOn
channel(Cmd 1,Cmd 21,Cmd 22,Cmd 23,Cmd 3)

if ((c22 b=INSERT) & (tab 2b=Table) & (v 2b!NULL) & (surn 2b!NULL) & (DN 2b!NULL))

if ((c21 b=CREATETABLE) & (tab 2b=Table) & (cp1 b!cp2 b) & (cp2 b!cp3 b) & (cp1 b!cp3 b))





Learning Behavior Profiles from Noisy

Sequences

Ugo Galassi

Abstract This paper proposes a new approach for building process profiles, which

capture the abstract pattern of the temporal evolution of a process. Profiles are mod-

eled as finite state stochastic automata, more specifically, by means of Hierarchi-

cal Hidden Markov Models. Consequently, abstract process behavior correspond to

probabilistic regular expressions.

A learning algorithm based on an abstraction mechanism is proposed, which can

automatically infer a profile from a set of traces of the process behavior. The induc-

tion algorithm proceeds bottom-up, progressively coarsening the sequence granu-

larity, letting correlations between subsequences, possibly separated by long gaps,

naturally emerge. Two abstraction operators are defined. The first one detects, and

abstracts into non-terminal symbols, regular expressions not containing iterative

constructs. The second one detects and abstracts iterated subsequences. By inter-

leaving the two operators, regular expressions in general form may be inferred. Both

operators are based on string alignment algorithms taken from bio-informatics. A re-

stricted form of the algorithm has already been outlined in previous papers, where

the emphasis was on applications. Here, the algorithm, in an extended version, is

described and analyzed into details. An extensive experimentation, made using both

artificial and real traces, concludes the paper.

1 Introduction

Many Intrusion Detection Systems (IDS’s), in computer networks [18, 28] and

Fraud Detection Systems (FDS’s), in networks and telephony [8, 28], make an ex-

tensive use of agent profiling [23], being an agent a computer process or a human

user. An agent profile is an abstract characterization of the agent activity which can
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be used both to check for normal behavior or to detect known anomalous behaviors.

Therefore, an IDS (FDS) is as much effective as better the profile captures the as-

pects of the agent behavior which are relevant to the task. Nevertheless, the methods

for building profiles are still quite primitive and, in many cases, reduce to measure

the frequency of selected classes of actions (e.g system call) executed by an agent

in a temporal window. This paper presents a new method, where more complex pro-

files, accounting for typical sequences of actions and for typical state transitions, are

learned by induction from logs of the agent behavior.

The basic assumption is that the behavior of an agent periodically exhibits short

sequences of actions, typical of the task it executes, interleaved with phases where

the activity cannot be modeled, because it is non-repetitive. For analogy with the

DNA sequences in molecular biology, we will call motifs such a kind of character-

istic sequences of actions. In fact, under the previous assumptions, the problem of

agent profiling presents strong analogy to the problem of discovering and character-

izing coding subsequences in a DNA chromosome.

Here, probabilistic regular expressions, extended with attributes [12], are pro-

posed to describe the abstract structure of profiles. Attributes are used to set con-

straints on atomic events. Therefore, the problem of discovering the structure of a

profile is turned into the problem of learning probabilistic regular expressions from

sequences containing gaps and noise.

The problem of inferring regular grammars from data has been previously inves-

tigated by many authors with approaches ranging from computational learning the-

ory [1, 24, 21, 22, 5] to neural networks [7], syntactic pattern recognition [13, 25],

and probabilistic automata [11]. Nevertheless, the problem considered here does not

match immediately any one of the problems solved by the mentioned approaches.

In fact, the task is more complex, because the sentences of the language to learn

are hidden inside sequences containing a possibly large amount of irrelevant knowl-

edge, which must be discarded.

By exploiting properties inherent to regular expressions, an abstraction mecha-

nism has been defined: it allows a process behavior to be seen at different levels of

granularity depending on the needs. Such a mechanism is exploited by the learning

algorithm, which automatically infers the behavior description from a database of

sequences. An important novelty, with respect to previous works, is a method for

detecting and learning recurrent structures inside an event, in presence of noise.

The paper concludes with an extensive evaluation of the learning algorithm. A

first set of tests is made using artificial traces generated in order to challenge the

algorithm to discover known pattern hidden in a database of sequences. By carefully

designing the model of the generative process, it has been possible to handcraft,

quite difficult learning problem, where both the capabilities and the limitations of

the algorithm emerge. Finally, a real agent profiling task has been designed, where

the challenge is to characterize the behavior of a user typing on a keyboard. Also in

this case, the algorithm was successful in discovering profiles, which clearly identify

an user from another.
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2 Learning by Abstraction

The main difficulty in discovering and modeling profiles hidden inside long se-

quences is due to the presence of long gaps, filled by irrelevant facts, between

episodes belonging to a profile. On the one hand, statistical correlations among dis-

tant episodes are difficult to detect. On the other hand, the complexity of the mining

algorithm increases with the length of the portion of sequence to be searched to de-

tect such kind of correlations. The strategy proposed here to cope with such kind of

problems is based on an abstraction mechanism.

In AI, abstraction has been proposed by several authors with different accep-

tions (see [27] for an introduction). The acception, adopted here, relays on the prop-

erty of regular expressions of being closed under substitution [16]: by replacing

a subexpression with a new symbol, an abstract expression is obtained. As previ-

ously mentioned, profiles are described by means of regular expressions extended

with attributes. By applying the substitution property, a profile can be abstracted, or

de-abstracted.

The idea will be further clarified describing the scheme of the algorithm used

for discovering profiles hidden in a set, L S , of learning sequences. The algorithm

starts bottom-up to construct an abstraction hierarchy, layer after layer. The basic

activity at each step consists in identifying episodes occurring with a relevant fre-

quency in L S : every episode is characterized by a regular expression R. Then,

the detected episodes are named by associating a new symbol to each one of them,

and episode names become the alphabet for describing L S at the next abstraction

level. Afterwards, every sequence in L S is abstracted (rewritten) by replacing

every episode instance occurring in it with the corresponding episode name. Subse-

quences of consecutive atomic events, which have not been included in any episode,

are replaced with a symbol denoting a gap. As it will be described in the next sec-

tions, gaps between episodes are considered as a special kind of episode.

In the new sequences obtained from the abstraction step, episodes, previously

separated by subsequences of irrelevant facts, may become consecutive, only sepa-

rated by one gap symbol. Then, at the next abstraction step, correlations at a wider

range can be detected by repeating the same procedure described so far, while the

complexity of the algorithm remains affordable.

Important aspects to consider, in order to correctly detect statistical correlations

between consecutive atomic events, are the event duration and the distance from

one another, which could be required to satisfy specific constraints. As an example,

one may be willing to accept a correlation between two events A and B, when B

frequently occurs few days after A, but one may want to reject a correlation if the

distance of B from A randomly ranges from one day to one year.

The attributes extending regular expressions have principally the function of pre-

serving the information about duration and distance between events through the

abstraction process. Every atomic event E is denoted by a name (symbol) and by an

attribute lE reporting the length (duration) of E on the unabstracted sequence. When

an episode is abstracted into a new atomic event at the higher level, the length of this

last is set to the length of the episode. In the same way, gaps are denoted by a sym-
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bol, and have a length set to the distance between the two neighbouring episodes.

As it will be described in the following, the event description language allows con-

straints on duration of an event to be specified. Therefore, to set constraints on the

distance between two events is sufficient to set constraints on the gap in between.

This solution, of using gap symbols to fill spaces between non adjacent atomic

events, allows for any discrete sequence to be transformed into a string of sym-

bols. The important benefit is that a large set of string processing algorithms can be

immediately exploited.

3 Regular Expressions

The standard formalism for regular expressions [16] is adopted for describing

episodes and profiles. Regular language syntax contains meta-symbols for denoting

disjunction and iteration. Disjunction is denoted by the symbol ”|”. For instance,

the construct a(c|d)a denotes a sequence of three symbols, where the first and the

third are ”a”, and the second may be ”c” or ”d”. Parentheses are used to enclose

subexpressions. The special symbol ε denotes the null event and is used to model

omission. For instance, expression a(c|d|ε)a entails that also the sentence aa, is

a possible event instance. Repetition is denoted by a superscript on a symbol, or

on a subexpression, which indicates how many consecutive times it occurs. As an

example, expression a3b2 is a compact form for denoting the sequence ”aaabb”.

In principle, regular expressions can also describe infinite sentences. The clas-

sical notation for handling infinity consists in using symbol ”⋆” as a superscript to

expressions. Here, infinity is not allowed. Instead, the regular language notation is

slightly extended to allow for nondeterminate iterations, where the number of repe-

titions may range inside a bounded interval. For instance, expression ab3,9 denotes

a sequence whose first element is ”a” followed by a number of ”b” ranging between

3 to 9.

Constraints on the event/gap length may be set by annotating symbols in regu-

lar expressions. Annotation must be included inside square brackets, following the

symbol denoting an atomic event. For instance a[n] means that the length la of a

must be n (la = n), whereas a[n,m] means that the length of a must range between n

and m (n≤ la ≤ m). A legal example of annotation can be as in the following:

a[3,5]3b[4,8]2 (1)

Informally, expression (1) specifies that the duration of any event of type a must

be in the interval [3,5] and the duration of any event of type b must be in the in-

terval [4,8]. Gaps are named and annotated as atomic events. However, given the

semantics of gaps, iteration has no meaning for them; then, gap names cannot have

an exponent.
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4 String Alignment and Flexible Matching

A key role in the abstraction process is played by the approximate matching of

strings and of regular expressions, which, in turn, is based on string alignment.

String alignment has been deeply investigated in Bio-informatics and a wide collec-

tion of effective algorithms are available for doing it[6, 15]. Here some basic con-

cepts, necessary to make the paper self-consistent, will be recalled; the interested

reader can find in[6, 15] an exhaustive introduction to the topic.

Definition 0.1. Given two strings s1 and s2, let s′1 and s′2 be two strings obtained

from s1 and s2, respectively, by inserting an arbitrary number of spaces such that the

atomic events in the two strings can be put in a one-to-one correspondence. The pair

A(s1,s2) = 〈s′1,s
′
2〉, is said a global alignment between s1 and s2.

From global alignment, local alignment and multi-alignment can be defined.

Definition 0.2. Any global alignment between a pair of substrings r1 and r2 ex-

tracted from two strings s1 and s2, respectively, is said a local alignment LA(s1,s2),
between s1 and s2.

Definition 0.3. Given a set S of strings, a multi-alignment MA(S) on S is a set S′ of

strings, where every string s∈ S generates a corresponding string s′ ∈ S′ by inserting

a proper number of spaces, and every pair of strings 〈s′1,s
′
2〉 is a global alignment

A(s1,s2) of the corresponding strings s1, s2 in set the S.

It is immediate to verify that, for a pair of strings s1 and s2, many alignments exist
1. However, the interest is for alignments maximizing (or minimizing) an assigned

scoring function2. A typical scoring function is string similarity [15], which can be

stated in the following general form:

∫(s1,s2) =
n

∑
i=1

∫(s′1(i),s
′
2(i)) (2)

being n the length of the alignment 〈s′1,s
′
2〉, and ∫(., .) a scoring function, which

depends upon the symbol pairs, which have been aligned.

An alternative to (2) for aligning strings and estimating similarity is based on a

special kind of Hidden Markov Model (HMM) called profile HMM (see [6] for an

introduction). The fundamental difference between profile HMM and (2) is that for

the former the scoring function is stated in terms of a mixture model defining a prob-

ability distribution. Then the similarity between two strings s1 and s2, or between

a string and a template, is defined as the probability that s2 be obtained from s1

1 If no restriction is set on the possible number of inserted spaces, the number of possible align-
ments is infinite.
2 As approximate/flexible matching between two strings, or between a string and a regular expres-
sion, is intended the problem of finding the optimal alignment with respect to an assigned scoring
function
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as the result of a stochastic sequence of insertions, deletions and substitutions. The

structure of a profile HMM is described in Figure 1. It contains three types of states:

match states where the emission corresponds to the expected nominal symbol, null

emission states modeling deletion errors, and insertion states modeling insertion er-

rors, where the emission is chosen among a set of possible symbols. Such a structure

can be obtained by compilation from a string, as well as from a regular expression.

In the case of Figure 1 the HMM has been obtained from the string ”PARIS”.

P A R I Ss e

Fig. 1 Profile HMM obtained from the string ”PARIS”. Square nodes represent match states, cir-
cles represent null emission states and diamonds represents insertion states. Transitions, from one
state to another, and emissions are governed by probability distributions not shown in the figure.
States labeled by s and e are the initial and final state, respectively.

In the framework of Dynamic Programming, the problem of finding an alignment

maximizing a similarity function is solvable with complexity of O(nm) being n and

m the length of s1 and s2, respectively. Nevertheless, approximate solutions can be

found in linear time[15]. On the contrary, the problem of finding an optimal multi-

alignment is exponential in the cardinality |S| of set S. Therefore, only approximate

solutions can be used when S is large.

The concept of similarity and alignment between strings is easy to extend to the

concept of alignment between a string and a regular expression. A regular expres-

sion R is equivalent to a set of strings that can be derived from it. Therefore the

optimal alignment between R and a string s, with respect to an assigned similarity

function, is the best alignment among all possible alignments between s and anyone

of the strings derivable from R. In the general case, the complexity for finding such

an alignment is O(nm) being m the length of R and n the length of s [20].

A similar extension holds in the HMM framework, where regular expressions

can be translated into HMMs. However, such translation requires the target HMM

to be augmented in two ways: (a) in order to deal with the presence of insertion

and deletion errors, extra states must be explicitly added; (b) in order to model

specific probability distributions, cycles in regular expressions need to be unrolled

into a feed-forward graph, where only self-loops are allowed. A description of the

problem and of the related methodologies can be found in [6, 3, 14].

A last point to discuss is how constraints, set in regular expressions on event

lengths, intervene in the matching procedure. Dealing with such kind of constraints

requires only minor changes in the algorithms searching for an optimal alignment:

symbols in the input string not matching the constraints will be considered as in-
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sertion errors that do not match any symbols. Consequently, the impact on the final

alignment will depend upon the specific scoring function. In a similar way, consider-

ing iterated subexpressions, iterations in excess (defect), with respect to the bounds

set in the exponent, will be considered as insertion (deletion) errors.

5 The Learning Algorithm

The main learning algorithm includes a basic cycle, activated bottom-up, in which

a new abstraction layer is constructed, and a refinement cycle, which can be called

top-down one or more times in order to refine the episode descriptions (see Figure

2). Both cycles are based on two abstraction operators, ωS and ωI , which are used to

infer the structure of regular expressions. Operator ωS constructs regular expressions

non containing iterative constructs, whereas ωI explicitly aims at discovering and

abstracting iterative constructs. By interleaving the two operators, an abstraction

hierarchy is obtained, from which regular expressions in general form are obtained.

Input Sequences

L-1

L-2

L-1 Sequence

 Description

L-2 Sequence

 Description

L-n

L-n Sequence

 Description

............

L-1 descriptions

L-2 Descriptios

L-n Descriptions

Event descriptions

I

I

R

R

Basic Cycle Refinement

Basic Cycle Refinement

Basic Cycle Refinement

R

User Activated

Fig. 2 The main learning algorithm structure. Every layer produces a more abstract description of
the input sequences.
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5.1 ωS Operator

The ωS operator takes in input a set S of similar substrings, detected using a lo-

cal alignment algorithm, and constructs an abstract atomic event defined as a pair

〈R,E〉 being R a regular expression generalizing the episode instances contained

in S, and E is the abstract event associated to R. The restriction is that items in R

may be only symbols, or disjunction of symbols. Therefore, no iterative constructs

are considered.

The core of ωS is the construction of the multi-alignment of all strings in the set

S; the similarity measure and the alignment procedure are parameters, which can be

assigned according to the needs. The semantics of ωS consists in the following three

step algorithm:

Algorithm ωS

1. Construct the multi-alignment MA(S) for strings in S.

2. Construct the match graph MG(S).

3. Transform MG(S) into an equivalent regular expression.

The multi-alignment MA(S) is a table whose columns contain the symbols put in

correspondence by the alignment algorithm. Therefore, the second step aims at

eliminating noise from episode descriptions preserving possible multi-modalities.

Symbols, occurring in a same column more frequently than expected if they would

be due to random noise, are considered match symbols and will be included in the

regular expression generated in the third step. Match symbols are associated to the

nodes of a directed graph MG(S). The edges of MG(S) are defined according to the

following rule: if there is at least one row in MA(S) where a match symbol x follows

a match symbol y, immediately or after one or more spaces, a link from x to y is set

in MG(S).
Graph MG(S) is transformed into a regular expression in Step 3. As there are

many possible way for doing it, it is not relevant to describe the algorithm into

details. In this phase, constraints on the event length (see Section 3) are also learned.

We remember that an atomic event E, in a regular expression, can be annotated as

E[n,m], being n and m the extremes of the interval in which the event length lE is

accepted. The values for n and m are estimated from the lengths of the instances of

E aligned in a same column in MA(S). In this phase, constraints, given a-priori as

background knowledge, can also be taken into account.

The algorithm is illustrated through an example in Figure 3, where a regular

expression describing a dimorphic occurrence of the word london3 in the Italian

language is extracted from a set of words affected by typos.

3 Names of foreign towns may occur in an Italian text both in their original orthographic form, or
in Italian translation. In this case London is translated into ”Londra”.
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(a)

l o n d o n
l o n d o n
l o n d r o n
l o n d r o
l i n d o n (b)
l o m d o n
l o n d r a
l o n d r a
l o m d r a (c)
l o n t r a
l a n d r a

l o n d

r a

o n

lond(on|ra)

Fig. 3 Example of non-iterative expression obtained from the string set {london, londra, lomdra,
lontra, londro, londron, rondon, lindon, london, lomdon, landra, londra, londla}. (a) Corresponding
multi-alignment. (b) Retained alternatives. (c) Final regular expression.

5.2 ωI Operator

Operator ωI is complementary to ωS, and explicitly searches for contiguous rep-

etitions of a same substring inside a given string s. This is done by computing the

self-correlation of the string similarity function. In fact, repeated substring instances

are expected to be very similar each other (identical in absence of noise). Then, pe-

riods in self-similarity function locate where repetitions of a same substring occur.

Let Wi and w j denote a reference window and a sliding window (of equal size) on s

beginning in position i and j, respectively. Let n be the length of s minus the length

of Wi. Let, moreover, SC be a triangular matrix of size n2/2; the notation SC(i, j)
will indicate the i, j element of SC. The basic self-correlation algorithm is the fol-

lowing:

Similarity self-correlation

1. Set i = 1

2. For j ranging from i to n evaluate SC(i, j) = ∫(Wi,w j) between the substrings selected
by Wi and w j , respectively.

3. Set i = i+1

4. If i is smaller than n goto step 2, otherwise continue.

5. Detect chains of maxima on SC, where the maximum value is close to the maximum
possible similarity value between two substrings Wi, w j . A substring r of s, laying in
between two consecutive maxima, is an iterated substring.

6. For every different iterated substring r construct a new hypothesis for an iterated
episode.

The complexity of the algorithm is O(n2/2). However, it is easy to make the

algorithm more efficient: when string similarity is close to zero, the windows can

slide much faster than one position at-a-time.

The contour plot of the SC matrix of two different strings is reported in Figure 4

(for the sake of clarity, the entire square matrix has been computed).
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(b)

Fig. 4 Examples of similarity self-correlation patterns. (a) The repeated subsequence is ”ab”. (b)
The repeated subsequence is ”aaaaabb”. In both sequences noise has been added. The rectangular
patterns clearly indicate the region where the iterated subsequences are located.

5.3 Basic learning cycle

The basic learning cycle consists of four major steps:

1. Non-iterative episode detection. Episodes consisting of non-iterated substrings

are detected and abstracted by applying operator ωS.

2. Iterative episode detection. Episodes consisting of an iterated substring are de-

tected and abstracted by applying operator ωI .
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3. Model construction. When necessary, an HMM is constructed for every ab-

stracted episode.

4. Sequence abstraction. The input sequences are rewritten using as new alphabet

the names of the abstract episodes.

Non-iterative episode detection. The core mechanism is represented by the ab-

straction operators ωS. However, some preprocessing is required before applying the

operator. In fact, ωS takes in input a set S of strings that is constructed by applying

a local alignment algorithm LA (see Section 4) followed by a clustering algorithm.

More specifically, LA is repeatedly applied to a set of sequence pairs randomly sam-

pled from the learning set L S and produces in output pairs of subsequences that

exhibit strong similarity. It is expected that a frequent episode occurs in many pairs

of sequences with minor differences from one instance to another. Then, episodes

deriving from a same regular expression are easy to detect by using a clustering al-

gorithm, which groups together most similar subsequences. The specific algorithm

used for this step is not very much critical, because the refinement cycle allows

possible errors to be recovered, as it will be explained later on. The currently used

algorithm is an incremental variant of classical k-Means.

Finally, ωS is applied to every cluster S obtained in this way, constructing a cor-

responding abstract event.

Iterative episode detection. In principle, the procedure described above is able to

discover an iterated episode when the number of iterations is very similar in all se-

quences where the episode occurs. On the contrary, it does not work properly when

the number of iterations is significantly different from one sequence to another, be-

cause the multi-alignment step fails. This problem is solved by operator ωI , which

is applied to a set of sequences sampled from L S . All iterated episodes found in

this way are collected into a set I. Afterwards, episodes characterized by an identi-

cal (or very similar) iterated substring are generalized to a unique abstract episode

description: a common iterated subsequence is chosen, and the iteration limits are

set in order to include all found instances. The abstract events constructed in this

way are then added to the ones generated by operator ωS.

Model Construction. This step is accomplished when an approximate matching

based on HMM has been required and consists in constructing an HMM for ev-

ery abstract event E characterized in the previous steps. Every expression RE is

converted into a HMM λE , and the sets of substrings, used to learn the regular ex-

pression describing the abstract events, are used to estimated the parameters of λE .

The details of the algorithm can be found in [3, 14].

Sequence abstraction. Every sequence s in L S is rewritten into an abstracted se-

quence s′ according to the following algorithm: s is scanned left-to-right searching

for instances of episodes detected and abstracted in the previous steps. The presence

of an episode E is decided by matching the corresponding regular expression RE

to s. Every time an instance is found, the name of E is appended to s′. However,

conflicting interpretations of a same subsequence may exist. Conflict resolution is
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delayed to a second swept and, initially, a lattice is generated, containing all plau-

sible hypotheses for episode instances. Afterward, lattices are processed extracting

from each one the maximum scoring sequence, which includes the best scored hy-

potheses compatible with the given constraints. The default constraint is that hy-

potheses must not overlap. In the case a string similarity function of type (2) is used

to match regular expressions, the score assigned to episode hypotheses is the value

computed by the similarity function. Otherwise, if a matching based on HMM is

used, the score of an event E is the probability assigned by the model λE . Portions

of the string s not abstracted by any episode are abstracted as gaps and represented

by a gap symbol.

The major steps of the basic cycle are illustrated through an example in Figure 5.

...zacacbbbbbbbststuhbn..

....accacbbbbsthsturlm..

....acacbbbbbbstfstubkku..

B::=(b)
4,7

...zacacBststuhbn..

....accacBsthsturlm..

....acacBstfstubkku..

...zac_acBst_stuhbn..

....accacBsthsturlm..

....acacBstfstubkku..

...zacacBst_stuhbn..

accacBsthstu

acacBststu

acacBstfstu

accacBsthstu
ac_acBst_stu

ac_acBstfstu

ac(c|ε)acBst(h|f|ε)stu

(a)

(b)

(c)

Fig. 5 Basic learning cycle example. (a) Iterated symbols are detected and replaced with the name
of the corresponding regular expression. (b) Local alignments are detected and similar substrings
are clustered together. (c) From the multiple alignment of elements in a same cluster a regular
expression is obtained.

5.4 Refinement cycle

The refinement cycle may be activated at the abstraction layer Li every time new

episodes are detected and modeled at a level higher than i. The reason for doing

it is illustrated in Figure 6. When an episode E is hypothesized and characterized

at an abstraction level Li, the context, i.e, the presence of other episodes before or
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after E, is not considered. Nevertheless, the context is considered later on when the

episodes of layer Li are linked together into an episode at level Li+1. This means

that some instances of E may be not included in any higher level episode and will

be considered spurious. Nevertheless, such instances were included in the cluster

a b a b e b a a d a d f c a c c a f

A

A

C

B

E

E

(a)

a b a b e b a a d a d f c a c c a f

A

A

C

B

E

E

α

(b)

a b a b e b a a d a d f c a c c a f

A

A

C

B

E

E

α

(c)

Fig. 6 The refinement step. (a) Episode lattice. (b) Some hypothesized events in (a) are not con-
sidered for a new episode. (c) Only the retained instances are used to re-train the episode model.

used to build up the regular expression describing E. In the refinement step, the

regular expression describing E are re-learned using only the instances that have

been retained.

As episode instances are detected using one of the approximate matching algo-

rithms described in in Section 4, the outcome of the refining cycle heavily depends

on it. Therefore, using a similarity function or an HMM can produce quite different

results.

6 Evaluation on Artificial Traces

This section provides an extensive evaluation of the learning algorithm using ar-

tificial traces. More specifically, the algorithm has been validated using artificial
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sequence sets, where known patterns have been hidden. The challenge for the algo-

rithm was to reconstruct the original model from the data.

It is worth noticing that, according with section 5 we use string similarity in the

basic learning cycle, whereas, in the refinement cycle, regular expressions are trans-

lated into HMMs. More specifically, the cascade of regular expressions generated

by the abstraction mechanism leads to a Hierarchical HMM (HHMM) [9], which is

trained using the classical EM algorithm.

Three different group of tests have been designed, each one aimed at testing

a different aspect of the algorithm. The first group is the easier and has the goal

of checking the ability at reconstructing patterns corrupted by noise. The second

group, is much more difficult and investigates how the behavior of the algorithm is

affected by the size of the alphabet of the regular expressions used to characterize

process behavior, and by the length of the motifs. Finally, the third group checks the

ability of the algorithm at learning model structured as a graph of motifs, i.e. the

ability at learning disjunctive expressions.

6.1 Motif reconstruction in presence of noise

This case study has the goal of evaluating the ability of the algorithm at correctly

generalizing the nominal form of motives in presence of noise. The generalization of

the learned HHMM is assessed by considering the maximum likelihood sequence, it

generates. In the best case this should be identical to the one generated by the orig-

inal model, used to construct the dataset. For this group of experiments, HHMMs,

which generate sequences of names of towns in a predefined order, have been used.

Such HHMMs also model the presence of noise in the data, in form of insertion,

deletion and substitution errors. The gaps between the names are filled by symbols

randomly chosen in the alphabet defined by the union of the letters contained in the

names. Moreover, random subsequences, up to 15 characters long, have been added

at the beginning and the end of each sequence. The global length of the sequences

ranges from 60 to 120 characters. The difficulty of the task has been controlled by

varying the degree of noise.

One set of experiments has been designed in this framework. More specifically, a

sequence of problems has been generated varying the number of words (5≤w≤ 8),

the word length (5 ≤ L ≤ 8) and the noise level (N ∈ {0%,5%,10%,15%}. For

every triple < w,L,N >, 10 different datasets has been generated for a total of 640

learning problems.

The most important results are summarized in Table 6.1. The error rate is eval-

uated as the edit distance (i.e. the minimum number of corrections) between the

maximum likelihood sequence (maximum consensus) generated by the Viterbi al-

gorithm [10] from the original HHMM and the one generated from the learned

HHMM. When, an entire word is missed, the corresponding error is set equal to

the its length. Experiments in table 6.1, reporting an error rate much higher than the

others, have missed words. In all cases, the learning cycle has been iterated twice,
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Error rate
after learning cycle

Error rate
after refinement

Noise Level Noise Level
w L 0% 5% 10 % 15% 0% 5% 10 % 15%

5 5 0.03 0.06 0.06 0.08 0.04 0.04 0.04 0.04
5 6 0.06 0.12 0.12 0.09 0.03 0.03 0.03 0.03
5 7 0.00 0.02 0.03 0.05 0.00 0.00 0.02 0.00
5 8 0.02 0.04 0.02 0.04 0.00 0.00 0.00 0.00

6 5 0.06 0.11 0.04 0.04 0.10 0.06 0.00 0.03
6 6 0.06 0.10 0.06 0.19 0.05 0.00 0.00 0.00
6 7 0.03 0.03 0.02 0.05 0.02 0.00 0.00 0.00
6 8 0.01 0.04 0.05 0.05 0.00 0.00 0.04 0.00

7 5 0.02 0.05 0.11 0.17 0.02 0.05 0.01 0.10
7 6 0.01 0.10 0.05 0.14 0.04 0.02 0.05 0.04
7 7 0.00 0.06 0.02 0.05 0.00 0.00 0.02 0.05
7 8 0.01 0.06 0.09 0.11 0.01 0.00 0.09 0.09

8 5 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00
8 6 0.03 0.08 0.10 0.14 0.03 0.06 0.06 0.14
8 7 0.00 0.01 0.01 0.08 0.00 0.00 0.00 0.00
8 8 0.01 0.03 0.08 0.09 0.01 0.00 0.00 0.0

Table 1 Performances obtained with town names dataset. The sequence length ranges from 60 to
140 characters. The CPU time, for solving a problem, ranges from 42 to 83 seconds on a Pentium
IV 2.4Ghz.

as explained in Section 5. It appears that the average error rate after the refinement

cycle decreases of about 50% with respect to the basic learning cycle.

From Table 6.1, it appears that the model extracted from the data without noise

is almost error free. Moreover, the method seems to be little sensitive with respect

to the sequence length while the error rate roughly increases proportionally to the

noise in the original model (the 15% of noise corresponds to an average error rate

of about 19%).

6.2 Assessing the influence of alphabet size and motif length

Two sets of target HHMMs have been constructed and used to generate a large num-

ber of sequence datasets. The HHMMs in the first set contain three motifs separated

by two gaps, plus an initial and a final random gap. The HHMMs in the second

group have a similar, but more complex, structure. They encode a sequence of six

motifs separated by 5 gaps.

Using a semi-automated procedure, 768 models (384 for each group) have been

constructed; they differ in the nominal length of the motifs (5, 8, 11, 15 symbols),

in the cardinality of the alphabet (4, 7, 14, 25 symbols) and in the probability distri-

bution controlling transitions from state to state and symbol emission inside states.

More specifically, four classes of normal distributions (N0, N1, N2, N3) of increas-
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ing variance have been considered. For every setting of the above parameters three

different models have been generated. They differ one from another for a small per-

turbation in the center locations of the probability distributions. Finally, for every

model, a learning set and a test set, each containing 100 sequences, have been gen-

erated.

The sequence length ranges from 600 to 2000. It is worth noticing that, consider-

ing the quite short motif length, the coding part is much smaller than the non coding

part appearing in the gaps.

The perturbation effect on the sequences, due to the increase of the standard devi-

ation in the probability distribution, has been evaluated as the average edit distance

δE between the motif instances occurring in a dataset and the maximum likelihood

instance, computed from the generative model by the Viterbi algorithm. The follow-

ing average values have been obtained for the four distributions:

Class: N0 N1 N2 N3

δE : 0.0 0.11 0.19 0.28

Notice that also the gap length spread is strongly affected by the increase in the

distribution spread, even if it is not accounted for in the measures reported above.

In order to evaluate the accuracy of the algorithm, let λD be the model learned

by the algorithm, and λT the target model, used to generate the data. Let moreover

(λD) denote the test set tagged with λD and (λT ) the one tagged with λT . The

error Err(λD) of λD on is measured as the average edit distance between the motif

instances in (λD) and the motifs instances in (λT ), divided by the length of the

motif instances in (λT ).
The performances obtained on the two groups of datasets are similar, even though

the ones on the first group are slightly better. The results are reported in Figures 7

and 8.

In presence of noise, it appear that Err(λD) increases when the alphabet cardi-

nality and the motif length decrease, as well as when the standard deviation of the

target model increases, as it is reasonable to expect. In fact, when the alphabet is

small, it is more difficult to distinguish real motifs from apparent regularities due

to randomness. For the same reason, short motifs are more difficult to detect. Then,

the performance degradation is due, in general, to the failure of the algorithm, which

searches for new motifs without finding the correct ones. However, it is surprising

that in some cases the accuracy decreases again when motifs become longer than 11

symbols. A possible explanation is the following: when the average length of a motif

instances increases in presence of noise, the number of alternative sequences, among

which the correct instances of the motif are to be identified, increases, smoothing

thus the similarity among strings and increasing confusion.

The decrease in the similarity between the target model and the discovered

model, when the probability distributions have long tails, is also in agreement with

what one expects. Nevertheless, it is interesting that the error rate remains compara-

ble to the level of noise of the dataset. It is also worth noticing that the performances

evaluated on the test sets and on the learning sets are almost identical, as their dif-

ferences are not statistically significant.
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Fig. 7 Algorithms performances on the sequences generated by models in Group 1 (3 motifs) and
in Group 2 (6 motifs). The plot reports the error Err = Err(λD) on the test set versus the motif
length ML ∈ (5, 8, 11, 15).
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Fig. 8 Algorithm performances on the sequences generated by models in Group 1 (3 motifs) and
in Group 2 (6 motifs). The plot reports the error Err = Err(λD) on the test set versus the alphabet
cardinality |A| ∈ (5,7,14,25).
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Finally, the system always converged to a stable model in a number of steps

ranging from 11 to 35. The computational complexity for learning a model corre-

sponding to a problem of the second group corresponds to a cpu time ranging from

30 to 40 minutes on a Opteron.

6.3 Discovering graph structured patterns

Aims of this case study is to check the ability of the algorithm at reconstructing

patterns described by disjunctive expressions.

The testing procedure is similar to the one used in the previous case study. The

difference is that, in this case target HHMMs have a a graph like structure at the

abstract level, instead of a sequential one. Moreover, spurious motifs have been

added to all sequences filling the gaps between consecutive motives, in order to

make the task more difficult.

Three target HHMMs, each one constructed according to a two level hierarchy

have been used to generate a set of 72 learning tasks (24 for every model). Every

learning task consists of a set of 330 traces. The 90% of the sequences contain

an instance of a target HHMM that should be discovered by the learning program,

whereas the 10% contain sequences of spurious motives non generated by the target

HHMM. The sequence length ranges from 80 to 120 elementary events.

The structure for the high level of the three models is shown in Figure 9. Ev-

ery state at the high level emits a string (motif) generated by an HMM at the low

level, indicated with a capital letter (A,B,C,D,E). A different HMM (F) has been

used to generate spurious motives. The gaps between motives have been filled with

subsequences containing random noise.

In this case, the evaluation of the results has been done on the base of the bayes

classification error between two (or more HHMMs). Formally, given two HHMMs,

λ1 and λ2, and the set L of all possible traces, which can be generated by λ1 or λ2,

the Bayes classification error C(λ1,λ2) is defined as:

C(λ1,λ2) = ∑
x∈L

[min(p(λ1|x), p(λ2|x)]p(x) (3)

being p(λ1|x) and p(λ2|x) the probability that, given a trace x, it has been generated

by λ1 or λ2, respectively, and p(x) the a priori probability of x. We notice that the

upper-bound for C(λ1,λ2)is 0.5, when λ1 and λ2 are identical. In general, for N

models, the upper-bound is given by the expression 1−1/N.

In general, expression (3) cannot be computed because L is too large. There-

fore, we adopted an approximate evaluation made using a subset of L stochastically

sampled.

The bayes classification error 3 intervenes in the evaluation procedure in two dif-

ferent ways. A first way is to measure the quality of the learned models. A perfect

learner should learn a model identical to the one used to generate the traces. There-
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Fig. 9 HHMM used for evaluation on artificial data

fore, a learned model has to be considered as much accurate as much close to 0.5

the classification error, between it and the original model, is.

The second way is to estimate the difficulty of the learning task. It is reasonable

to assume that the difficulty of identifying a model hidden in a set of traces grows

along with the similarity among the motives belonging to the model and the spurious

motives. Moreover, the difficulty grows also when the motives belonging to a same

model become similar each other, because it becomes more difficult to discover

the correspondence between a motif and the hidden state it has been emitted from.

Therefore, the experimentation has been run using different versions of models A,

B, C, D, E, F with different bayes classification error among them.

The results obtained under three different conditions of difficulty are summarized

in Table 6.3. The similarity between the six kinds of motives has been varied from

0.2 to 0.55. For every setting, the experiment has been repeated 8 times for each

one of the three models. The reported results are the average over the 8 runs. In all

cases, the bayes classification error has been estimated using a set of traces obtained

by collecting 500 sequences generated from each one of the models involved in the

specific comparison.

Motives 0.2 0.4 0.55

Model (a) 0.48 0.46 0.45
Model (b) 0.47 0.42 0.42
Model (c) 0.43 0.42 0.41

Table 2 Bayes classification error between the target model and the learned model, versus the
confusion among the basic motives (reported in the first line).
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It appears that the performances suffer very little from the similarity among the

motif models, and in all cases, the similarity between the original model and the

learned model is very high (C(λ1,λ2), is close to 0.5).

7 User Profiling

User profiling is widely used to detect intrusions in computer or in telephony net-

works. The possibility of automatically building a profile for users or for network

services reflecting their temporal behavior would offer a significant help to the de-

ployment of adaptive Intrusion Detection Systems (IDSs) [19].

The experiments described in the following investigate the possibility of auto-

matically constructing a user profile from the logs of her/his activity. The task that

has been selected consists in learning to identify a user from his/her typing style on

a keyboard. The basic assumption is that every user has a different way of typing,

which becomes particularly evident when he/she types words which are specifically

important for him/her, such as his/her own name, or words referring to his/her job.

This application has not been selected with the goal of challenging the results pre-

viously obtained [17, 2, 4], but because it is highly representative of the class of

tasks we tackle, and the data are easy to acquire. In other words, if the methodology

described so far succeeds in building up a HHMM for this kind of user profiling, it

is likely that it will succeed in other cases as well. Two experiments, described in

the following subsections, have been performed.

7.1 Key Phrase Typing Model

In the first experiment, the goal was to construct a model for a user typing a key

phrase, discriminant enough to recognize the user among others. A selected sen-

tence of 22 syllables has been typed many times on the same keyboard, while a

transparent program recorded, for every typed key, the duration of each stroke and

the delay between two consecutive strokes. Then, every repetition of the sentence

generated a sequence, where every key stroke corresponded to an atomic event; the

delay between two strokes was represented as a gap, whose length was set to the cor-

responding duration. Four volunteers provided 140 sequences each, and, for every

one of them, a model has been built up using 100 traces (for each user) as learn-

ing set. The four learned models have been tested against the remaining 160 traces.

For each model λ and for each trace s, the probability of λ generating s has been

computed using the forward-backward algorithm [26]. Then, s has been assigned to

the model with the highest probability. The results reported only one commission

error and two rejection errors (no decision taken), when a trace was not recognized

by any one of the models. The models were organized on two levels. The first one

contained from 10 to 12 episodes separated by gaps. Even if the recognition rate is
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high, it does not seem realistic to use the acquired models to build up a deployable

authentication system. In fact, a user profile based on a key phrase only is too re-

stricted. The positive result is that a Markov model of a user typing on a keyboard

seems to be appropriate.

7.2 Text Typing Model

The second experiment addressed the more general problem of modeling a user dur-

ing a text editing activity. A corpus of several paragraphs, selected from newspapers

and books, has been collected. The total number of words was 2280, and the number

of typed keys 14273. Again, four users typed the entire corpus in several different

sessions, without any constraint, in order not to modify their natural typing style.

In this kind of application, a user model should be centered not on the specific

words he/she types, but on the user typing style, which, in turns, depends on the

position of the keys on the keyboard. Therefore, a standard keyboard subdivision

into regions, used in dactylography, has been considered, and, on this basis, keys

have been grouped into 10 classes. In this way, transition from one region of the

keyboard to another should be emphasized. Afterwards, the sequences generated

during a typing session have been rewritten by replacing every character with the

name of the class it has been assigned to. Moreover, only the gap duration between

strokes has been considered, disregarding the length of the key strokes themselves.

Finally, long sequences deriving from an editing session have been segmented into

shorter sequences, setting the breakpoint in correspondence of long gaps. The idea

is that typical delays due to the user typing style cannot go beyond a given limit.

Longer delays are imputable to different reasons, such as thinking or change of the

focus of attention. In this way a set of about 1350 subsequences has been obtained.

For every user, a subset of 220 subsequences has been extracted in order to learn

the corresponding model. The remaining ones have been used for testing. As in the

previous case, the probability of generating each one of the sequences in the test set

has been computed for every model.

The results are summarized in Figure 10, where the distribution of the scoring

rate on the test sequences is reported for every model. The scoring rate is measured

in log odds4. The continuous line, labelled ”Pos”, represents the distribution of the

scores assigned to the correct model (user), whereas the other one, labelled ”Neg”,

represents the distribution of the scores assigned to all other models (users), consid-

ered together . The sequences on the extreme left have been rejected. It is evident

from the figure that sequences belonging to the model are well separated from the

other ones. Referring to the data in the test set, a monitoring system using the sim-

ple rule that, in a set of three consecutive sequences generated by a user at least two

must have a score higher than ’0’, would give a perfect discrimination of the legal

user without rising false alarms.

4 The logarithm of the ratio between the probability that the observed sequence is generated by the
model and the probability that it is generated by a random process.
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Fig. 10 User profiling statistics. Graphs (a), (b), (c) and (d) refer each one to a different user
profile. The continuous line ”Pos” reports the scoring, measured in log odds, for the the sequences
belonging to the profile. The dotted line ”Neg” refers to the sequences not belonging to the profile.
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It is worth noting that the results have been obtained as a first shot, without re-

quiring any tuning of the algorithm. This means that the method is robust and easy

to apply to this kind of problems.

8 Conclusion

An algorithm for inferring abstract descriptions of an agent behavior has been pre-

sented, where an agent behavior is modeled by means of probabilistic regular ex-

pressions. An agent model is an abstract characterization of the agent activity which

can be used both to check for normal behavior or to detect known anomalous be-

haviors in Intrusion Detection Systems.

The main contribution of the paper consists in organizing and generalizing in a

unique framework different methods developed in the past. Moreover, the learning

algorithm architecture, which is based on an abstraction mechanism, is described

into details.

It is worth noticing that the cascade of regular expressions generated by the ab-

straction mechanism leads to a Hierarchical Hidden Markov Model [9] that offers a

framework which is powerful enough to model many real world problems, and has

an affordable computational complexity.

In several tests on artificial datasets, the method succeeded in reconstructing non

trivial agent profiles, and the results obtained on a task of user identification are very

encouraging. In particular, we consider very promising the fact that the distance be-

tween models of different users is very large. We need to point out that, in this case,

the goal was not to compete with the results obtained by task specific algorithms

[2, 4, 17], but to test how a general purpose algorithm performed on a non trivial

task for which it was not customized. The results look interesting and the algorithm

has been easy to apply and didn’t require special tuning on the problem, demon-

strating that the method is robust and suitable for applications in real domains also

when the available domain knowledge is poor.
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Correlation Analysis of Intrusion Alerts

Dingbang Xu and Peng Ning

Abstract To defend against computer and network attacks, multiple, possibly com-

plementary security devices such as intrusion detection systems (IDSs) and firewalls

are widely deployed to monitor networks and hosts, and may flag alerts when suspi-

cious events are observed. However, at present, security systems such as IDSs still

suffer from several limitations. First, IDSs may flag a large volume of alerts every-

day, overwhelming security administrators. Second, among the alerts reported by

the IDSs, a possibly large proportion of false alerts (i.e., false positives) are mixed

with true ones, and it is usually difficult for human users to differentiate between

them. Third, there are certain attacks that may not be detected by IDSs. That is,

IDSs may miss attacks. To address these challenges and learn the network security

threats, it is necessary to perform alert correlation.

Alert correlation focuses on discovering various relationships between individual

alerts. This chapter gives an overview of current alert correlation techniques. Exist-

ing alert correlation techniques can be roughly divided into four categories: (1) The

approaches based on similarity between alert attributes, which group alerts through

computing attribute similarity values; (2) the techniques based on predefined attack

scenarios, which construct attack scenarios through matching alerts to predefined

scenario templates; (3) the methods based on prerequisites (i.e., pre-conditions) and

consequences (i.e., post-conditions) of attacks, which build attack scenarios through

matching the consequences of earlier attacks with the prerequisites of later attacks;

and (4) the approaches based on multiple information sources, which integrate dif-

ferent types of information and may further perform reasoning based on IDS alerts

and other information. In each category, representative approaches and systems are

discussed. In addition, this chapter also addresses privacy issues in alert correlation.
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1 Introduction

Intrusion detection has been an active research field for more than 25 years since

Anderson published his seminal work on Computer Security Threat Monitoring and

Surveillance [2]. Intrusion detection techniques can be roughly classified into two

categories: misuse detection and anomaly detection. To perform misuse detection, a

repository of all known attack patterns is necessary. Misuse detection systems exam-

ine security events to see whether they match these attack patterns. If they are, the

corresponding security events are flagged as attacks. To perform anomaly detection,

a repository of normal behaviors for each entity (e.g., each user) is usually neces-

sary. Anomaly detection systems monitor each entity’s activity, and once they find

an entity’s behavior significantly deviates from the corresponding normal profile, an

alert is generated.

Since Anderson’s report, many intrusion detection systems (IDSs) have been de-

signed, implemented and deployed into networks. They are a line of defense to

protect digital assets. Though many novel designs and improvements have been

proposed, at present, intrusion detection systems still suffer from a few drawbacks:

• Intrusion detections systems may flag thousands of alerts everyday, thus over-

whelming security officers. For example, our own experience shows that 325,968

alerts were reported when a Snort box was deployed for 6 days in a subnet host-

ing a teaching lab on a campus network.

• Among all the alerts reported by IDSs, false alerts (i.e., false positives) are

mixed with true alerts. In addition, it is very possible that a large percentage of

alerts are false alerts. For example, Julish [18, 19] and other researchers pointed

out that up to 99% of alerts could be false positives. This may make the alert

investigation very challenging.

• At present, IDSs cannot guarantee the detection of all attacks. In other words,

they may miss some attacks, which could be critical for security officers to

understand the current security threats.

These limitations of IDSs make security investigation not only time-consuming,

but also error-prone. It is very challenging for security officers to fully learn the

security threats in their networks as well as over the Internet.

To address these challenges, various alert correlation analysis techniques have

been proposed in recent years. For example, to reduce the number of alerts reported

to security officers, Valdes and Skinner [34] propose probabilistic alert correlation,

and Debar and Wespi [11] propose techniques to identify duplicates and perform

aggregation based on different situations. To address the false positive issue, Porras,

Fong, and Valdes [30] propose mission-impact-based approach, where alerts are ex-

amined through checking vulnerability and host configuration information, and Zhai

et al. [39] propose to use Bayesian networks to perform reasoning on complemen-

tary security evidence, and thus to potentially reduce false alert rates. To mitigate

the missed attacks problem, Ning and Xu [27] propose to integrate complementary

correlation methods, and perform hypothesizing, reasoning and filtering to look for
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potentially missed attacks, and Cuppens and Miège [7] propose to apply abductive

correlation.

To help us better understand these alert correlation methods, we roughly classify

these methods into four categories. (1) The approaches based on similarity between

alert attributes. These approaches can group alerts through computing attribute sim-

ilarity values. An example method in this category is [34]. (2) The techniques based

on predefined attack scenarios. These techniques construct attack scenarios through

matching alerts to predefined scenario templates. An example method in this cate-

gory is [23]. (3) The methods based on prerequisites (i.e., pre-conditions) and con-

sequences (i.e., post-conditions) of attacks. These methods build attack scenarios

through matching the consequences of earlier attacks with the prerequisites of later

attacks. Example methods in this category are [25, 7]. (4)The approaches based on

multiple information sources. These approaches provide frameworks to model dif-

ferent types of information and may further perform reasoning based on IDS alerts

and other information. Example methods in this category are [30, 24].

The reminder of this chapter is organized as follows. In Section 2, we discuss

the similarity based correlation approaches. In Section 3, we present predefined

attack scenarios based approaches. In Section 4, we survey the prerequisites and

consequences based methods, and in Section 5, we discuss the multiple information

sources based approaches. In each of these four sections, the typical approaches in

the corresponding category are also presented. Furthermore, we notice that the pri-

vacy issues have gained a lot of interests in the field of alert correlation, so in Section

6, we discuss the privacy issues. And finally, in Section 7, we conclude this chapter.

2 Approaches Based on Similarity between Alert Attributes

IDSs may flag alerts when suspicious events are observed. Each alert usually has

several attributes associated with it. For example, network based IDSs report the

suspicious event’s source IP address, source port number, destination IP address,

destination port number, and timestamps information. Based on these attribute val-

ues, some similarity based alert correlation approaches first compute how similar

two or more alerts are, and then group alerts together based on these computed sim-

ilarity values. These methods are closely related to data clustering techniques in

data mining [15, 20]. Approaches in this category can potentially reduce the num-

ber of alerts reported to the security officers, because a group of similar alerts may

correspond to the same attack or attack trend.

To help us understand this idea, let us take a look at an example. Assume there

are two network based IDSs: Snort [3] and RealSecure network sensor [17]. Fur-

ther assume that there is an FTP attack in the network, and this attack is detected

by both Snort and RealSecure network sensor. For the alerts reported by Snort and

RealSecure, it is very likely that they have the same source IP addresses, the same

destination IP addresses, identical destination port numbers, identical or very close

timestamps, etc. Through identifying these similar attribute values, security officers
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may realize that these alerts correspond to the same attack. Notice that in these cor-

relation approaches, how to define similarity measures usually is one of the major

focuses. There are several different similarity measures being proposed. For exam-

ple, Julisch [18] defines similarity/dissimilarity measures based on generalization

hierarchies. In the following, we discuss some typical approaches in this category.

2.1 Probabilistic Alert Correlation

In 2001, Valdes and Skinner [34] proposed a probabilistic approach to performing

alert correlation. One of the main focuses in their approach is to compute the simi-

larity values among alerts. In their approach, heterogeneous sensors such as network

based IDSs as well as host based IDSs are considered. Each alert reported by IDSs

is assumed to have several features, for example, target hosts and ports, and times-

tamps. Since IDS sensors are heterogeneous, it is not necessary that alerts reported

by different sensors have the same list of features. Thus to compute the similarity

among different alerts, Valdes and Skinner propose to first identify the common

(overlapping) features. Next, this approach specifies expectation of similarity and

minimum similarity for the features. In addition, for each feature, a similarity func-

tion is defined, which will be used to calculate the similarity value for the same

feature among different alerts. Notice that feature similarity functions may be de-

fined through various criteria. For example, the similarity between IP addresses may

consider if they are identical or from the same subnet; if a feature has a list of values

(e.g., all open ports reported by a scanning attack), the overlapping values among

multiple lists can be considered when calculating similarity. The similarity value is

between 0 to 1.

For two alerts with several common features, their overall similarity is a function

related to similarity values for individual features, the expectation of similarity for

each feature, and the minimum similarity for each feature. Specifically, for each

feature, if their similarity value is less than the corresponding predefined minimum

similarity, then the overall similarity is 0; if the minimum similarity is satisfied, then

the overall similarity is the weighted average of similarity values for those common

features, where the weights are the expected similarity values for the corresponding

features. The formula for overall similarity computation [34] is defined as

SIM(A,B) =
∑n

i=1 SIM(Ai,Bi)×Ei

∑n
i=1 Ei

,

where A and B are two alerts have n features in common, Ai and Bi are values for

the common feature i in A and B, respectively, SIM(Ai,Bi) is the similarity between

Ai and Bi, and Ei is the expected similarity value for feature i.

In order to evaluate this approach, Valdes and Skinner performed experiments

in a live environment as well as a simulated network. As an example to show the
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effectiveness of the proposed approach, in the live environment experiment, IDS

sensors reported 4439 alerts, and their approach correlated them into only 604.

2.2 Statistical Anomaly Analysis to Detect Stealthy Portscans

In 2002, Staniford, Hoagland and McAlerney [32] proposed an approach to au-

tomatically detecting stealthy portscans. Although their approach focuses on port

scanning detection, it can be extended to correlate other security events.

In this approach, network packets are the primary information to be dealt with.

To detect port scanning, feature data such as source IP addresses, destination IP ad-

dresses, and destination ports are extracted from network packets. The combination

of these features are also called events. The detection of port scanning can be per-

formed into two steps: anomalous event identification and portscan correlation. In

the first step, based on the distribution of network traffic, an anomaly score A(x) is

computed [32] as

A(x) =− log(P(x)),

where x is an event (e.g., a network packet in terms of feature data), and P(x) is x’s

probability value based on network traffic distribution. When the anomaly scores of

events (network packets) are greater than certain thresholds, these events are passed

to the second step.

The general idea of the second step is to correlate (group) certain events together,

and the groups of events may be identified as portscans. To group events, Staniford,

Hoagland and McAlerney propose to compute the strength of connections between

events using the evaluation function. Given two events e1 and e2, the evaluation

function [32] is defined as

f (e1,e2) = c1h1(e1,e2)+ c2h2(e1,e2)+ · · ·+ c jh j(e1,e2),

where c1, c2, · · · , c j are some constants, and h1(e1,e2), h2(e1,e2), · · · , h j(e1,e2)
are some heuristic evaluation functions. These heuristics may be feature equality

heuristics, feature proximity heuristics, feature separation heuristics, feature co-

variance heuristics, and so forth. As an example, a feature equality heuristics may

check to see if two destination IP addresses are the same, if two destination ports

are the same, etc. After computing the strengths of connections, a set of events may

be grouped if the strengths of connections between events are greater than a certain

threshold. In addition, the anomaly score of each group is the summation of the

anomaly scores of all events in the group. If the anomaly score of a group is greater

than a threshold, a port scanning alert is reported to a security officer.

In order to evaluate the proposed approach, a system called SPADE (Statisti-

cal Packet Anomaly Detection Engine) was implemented, and experimental results

were collected. As an example of experimental results, in a 3-week data set, SPADE

flagged 28 horizontal scans (horizontal scan means attackers scan all IP addresses in

a range of network addresses for some specific network services) as well as 4 nmap
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network scans. SPADE was implemented as a Snort preprocessor plugin and was

publicly released.

2.3 Root Cause Analysis

In 2003, Julisch [18] proposed an alert clustering approach to performing root cause

analysis, where the root cause is the reason why the alerts are triggered. As illus-

trated by Julisch, the root cause an HTTP server with a broken TCP/IP stack may

trigger many fragmented IP alerts. The rationale of this approach is based on the

observation that although IDSs flag thousand of alerts everyday, it is not uncom-

mon that a few dominant root causes may trigger 90% of all alerts. Thus if security

officers can identify these root causes (with the corresponding alerts), and remove

these root causes, they can dramatically reduce the number of potential alerts in the

future.

To perform root cause analysis for an alert log (a set of alerts), the general idea

is to identify clusters of alerts so that the alerts in the same cluster are similar and

correspond to the same root cause. Here similarity or dissimilarity measures are

critical for this clustering analysis. To help define these measures, Julisch first in-

troduce generalization hierarchies for alert attribute values. Alert attribute values,

for example, IP addresses and timestamps, can be generalized to higher level con-

cepts, which usually denote a subset of attribute domain. For example, individual IP

addresses can be generalized to network addresses. Attribute values can be general-

ized into different levels of concepts and a generalization hierarchy is then formed.

Julisch [18] defines a sequence of dissimilarity measures, which are all related to

generalization hierarchies.

• Given an attribute A, a generalization hierarchy G for A, and two attribute values

x1 and x2 in A’s domain, the dissimilarity measure d(x1,x2) computes the length

of the shortest path between x1 and x2 such that x1 and x2 have a common parent

node in the hierarchy G.

• The dissimilarity between two alerts is the summation of the dissimilarity be-

tween the corresponding attribute pairs.

• The average dissimilarity d̄(g,C) between a generalized alert g and an alert

cluster C is defined as

d̄(g,C) =
the summation of the dissimilarity between g and each alert in C

|C|
,

where |C| is the number of alerts in the cluster C.

• The heterogeneity H(C) of an alert cluster C is the minimal value of the average

dissimilarity values between any generalized alert and the cluster C.

In addition, Julisch [18] formally defines alert clustering problem. Given an alert

log L, a set of generalization hierarchies for all attributes in alerts, and an integer

min size, the alert clustering is to find a cluster C, which is a subset of L, such that
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the heterogeneity H(C) is minimal and |C| ≥ min size. Since this alert clustering

problem is an NP-complete problem, Julisch propose a heuristic algorithm to per-

form alert clustering. The basic idea of this heuristic is to select some attributes

in the alerts, and then replace attribute values with their parent node values in the

generalization hierarchies. This procedure continues until certain conditions are sat-

isfied. This heuristic can guarantee that the cluster size |C| is no less than min size,

but the heterogeneity value H(C) may not be minimal.

To illustrate the effectiveness of this approach, Julisch analyzed an alert log with

156,380 alerts. He observed that the top 13 alert clusters account for 95% of all

alerts. Through analyzing related data sets, the author also expected to reduce 82%

of the future alert load.

2.4 Statistical Causality Analysis Based Approach

In 2003, Qin and Lee [31] proposed an alert correlation approach to performing

statistical causality analysis. The focus of this approach is to conduct time series

and statistical analysis to get attack scenarios, though Qin and Lee also propose

clustering techniques to aggregate certain lower level alerts to a hyper alert (i.e., a

group of alerts ordered by timestamps) thus potentially reduce the alert volume, and

perform alert prioritization to identify important alerts. Generally speaking, the alert

processing in this paper can be roughly divided into three steps.

In the first step, the major work is alert aggregation and clustering. Considering

that each alert has several attributes such as source IP addresses, destination IP ad-

dresses, and timestamps. The proposed technique examines these attribute values,

and put those alerts into the same cluster if their attribute values (except timestamps)

match and the timestamps fall within a pre-defined time window. A cluster of the

alerts ordered by timestamps is also represented as a hyper alert.

The second step is alert prioritization. The goal of this step is to rank the alert

priority (importance). The priority computation and ranking is based on the alerts

and the related network or host configurations. Qin and Lee adapt the techniques

proposed by Porras, Fong and Valdes [30], and propose to use Bayesian networks

to perform priority computation. Specifically, assume that a Bayesian network is a

directed acyclic graph, and the root node denotes the priority with certain hypothesis

states. In addition, let Hi be the ith hypothesis of the root node, ek be the kth leaf

node, and suppose each Hi is independent. Thus the belief in hypothesis is computed

[31] as

P(Hi|e
1, · · · ,en) = γP(Hi)

n

∏
k=1

P(ek|Hi).

In this formula, γ = 1/P(e1, · · · ,en), and ∑i P(Hi|e
1, · · · ,en) = 1. The computed

priority score falls within the range of [0,1], where the higher value denotes the

higher priority.
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The third step is the main focus of this paper, where statistical Granger Causal-

ity Test is performed and attack scenarios are constructed accordingly. Given two

time series variables x and y, Granger Causality Test is used to see if the lagged

information in x can provide statistically significant information in y (please refer to

[31, 14] for the details of Granger Causality Test). Given a hyper alert, a univariate

time series can be generated through partitioning the time range into equal intervals,

and then counting the number of alerts in the corresponding time intervals. To per-

form causality analysis for a target hyper alert Y , any other hyper alert, for example,

hyper alert X , is chosen and the two corresponding univariate time series are tested

through Granger Causality Test. Based on the results of Granger Causality Test,

the candidate causal hyper alerts are ranked according to Granger Causality Index

values. Next, the top m candidates in the ranked list are chosen and may possibly

be used to build attack scenarios. In addition, realizing that removing background

alerts is important for alert correlation, Qin and Lee also propose to use Ljung-Box

test to achieve this goal.

To evaluate the effectiveness of the proposed approach, Qin and Lee conducted

several experiments through the data sets from DARPA cyber panel program grand

challenge problem [10] as well as DEF CON 9 Capture The Flag [12]. For example,

in Scenario I data set from DARPA cyber panel program grand challenge problem,

25,000 low level alerts are aggregated into about 2,300 hyper alerts, and the causal

relationships discovered in the data set are also desirable (In a network enclave, the

experimental results demonstrate that the true causality rate is more than 95% and

the false causality rate is less than 13%.).

2.5 Alert Clustering and Merging in MIRADOR Project

In 2001, Cuppens [6] proposed an approach to managing alerts in an environment

with multiple IDSs. This work is related to MIRADOR project, which was funded

by the French DGA/CASSI. In an environment with multiple IDSs, it is very pos-

sible that different IDSs may flag different alerts, even for the same attack. Alert

clustering tries to put the alerts into the same cluster if they correspond to the same

attack. Roughly speaking, alert processing in this paper is divided into three steps

(functions): alert (base) management, alert clustering, and alert merging.

Usually, the alerts reported by different IDSs may have distinct data formats. For

example, some IDSs report alerts into text files, some IDSs put alerts into databases,

and these alerts may use different attribute names to denote attack information. To

deal with this situation, Cuppens assumes that alerts should satisfy the requirement

from Intrusion Detection Message Exchange Format (IDMEF) [9].

The first step of alert processing is alert (base) management. In this step, alerts

reported by different IDSs are transformed into tuples (records) and then saved into

relational databases. To perform this transformation, Cuppens first generate database

schema based on DTD and XML alert messages (IDMEF alerts are represented

in XML format). Multiple relations may be created to accommodate all entities,
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attributes, and elements. Next, each IDMEF alert message is analyzed and values

are extracted to fill into database tables. It is possible that one alert corresponds to

multiple tuples in a database.

The second step is alert clustering. In this step, alerts reported by different IDSs

are grouped into clusters so that the alerts in one cluster correspond to one attack.

The critical part in this step is to identify similarity between alerts. Cuppens propose

to use an expert system to define similarity requirement. Similarity relations are

specified for attributes, for various entities such as Classification, Source, Target,

and Detecttime, for database tuples, for relationships, as well as for alerts. Next,

domain specific similarity expert rules are further defined. Cuppens specifies rules

for four entities: classification, source, target, and time.

• Classification similarity: assume that for each IDS, the classification reported

has both generated name and standard attack name, where generated name is

specific to this IDS, and standard attack name is from some common naming

systems such as Common Vulnerability Enumeration (CVE). Two entities of

classification are similar if their corresponding standard attack names have a

common name.

• Source similarity and target similarity: two sources or targets are similar if their

related information such as nodes, services, and/or processes are similar. No-

tices that it would be helpful to identify the similarity if the mapping between

host names, IP addresses, service names, port numbers, and so on, is available.

• Time similarity: two attributes of Detecttime are considered similar if their dif-

ference is within certain predefined threshold.

The third step of alert processing is alert merging, where the alerts in each cluster

are merged, and a global (representative) alert is created with merged data. One of

the critical points here is how to merge different attributes such as classification,

source, target, and time information.

• Classification: to merge attack classification for a cluster, a union of all classi-

fication values in this cluster is generated.

• Source and Target: when two or more sources/targets are similar, these sources/-

targets are merged so that a unique (common) source/target is created for the

global alert; when two or more sources/targets are different, all these different

values will be included in the global alert.

• Time: usually, a time range [earliest time, latest time] will be generated based

on timestamps information such as Detecttime in the alert cluster.

To evaluate the effectiveness of the proposed approach, Cuppens also did two

experiments. As an example, in his first experiment, two IDSs Snort and e-Trust

were deployed, and 87 attacks were tested. Among them, Snort detected 68 attacks

with 264 alerts, and e-Trust detected 42 attacks with 61 alerts. Clustering analysis

produced 101 clusters and hence 101 global alerts were generated after merging.
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3 Approaches Based on Predefined Attack Scenarios

An attack scenario usually is a sequence of individual attack steps linked together

to show an aggregated or global view of security threats. To build these attack se-

quences, a straightforward way is to first predefine some attack scenario templates.

For example, we may specify an attack sequence template where IP Scan is fol-

lowed by TCP Port Scan and then by FTP Buffer Overflow. Next, individual alerts

reported by IDSs are matched to these scenario templates to construct attack sce-

narios. These approaches can help security officers to discover all scenarios where

their corresponding patterns are aware of and predefined. However, sometimes it

is not easy to exhaustively list all attack sequence templates. Another limitation of

these methods is that once some novel attack patterns are created by attackers, the

corresponding attack scenarios may not be recognized. In the following, we present

a few representative approaches in this category.

3.1 Aggregation and Correlation in IBM/Tivoli Systems

In 2001, Debar and Wespi [11] proposed an approach to performing aggregation and

correlation to intrusion alerts. The purpose of this paper is to address the current

IDSs’ limitations such as alert flooding and false alerts. Various issues have been

discussed, for example, the architecture of combing IDSs with aggregation and cor-

relation components, alert data model, and aggregation and correlation components

(ACC). In this subsection, we focus on ACC, which is a component in IBM/Tivoli

Systems.

The main functionality of ACC is to group alerts based on predefined relation-

ships between alerts. ACC mainly identify two types of relationships: correlation

relationship and aggregation relationship, where correlation relationships are used

to discover the same attack trend through identifying duplicates and consequences,

and aggregation relationships aggregate alerts based on the predefined situation cri-

teria. Alert processing in ACC can be divided into three steps.

The first step is alert preprocessing. The basic functionality of this preprocessing

is to provide a unified alert data model for the later correlation and aggregation anal-

ysis. In this step, several tasks are performed. For example, common attributes of

IDS alerts are extracted, obviously incorrect information about alerts are identified,

time information is synchronized, and the mapping between network service names

and port numbers is established.

The second step is alert correlation, where two types of correlation relationships,

duplicates and consequences, are identified. An example of duplicate alerts is those

alerts flagged when multiple IDSs detect the same attack. The identification of du-

plicate relationships is similar to those similarity based correlation approaches dis-

cussed in Section 2. Alert type information as well as attribute values from different

alerts are examined to see if they match. New severity levels will also be computed

for the duplicates. On the other hand, consequence relationships are used to model
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chronicle EX1[?source, ?target]
{

event(alert[port scan, ?source, ?target], t1)
event(alert[ftp overflow, ?source, ?target], t2)
event(alert[remote access, ?source, ?target], t3)

t1 < t2 < t3

when recognized {
emit event(alert[ftp scenario, ?source, ?target], t2);

}
}

Fig. 1 An example of chronicles

if one security event is the consequence of an earlier event. A sequence of con-

sequence relationships can describe a chain of attack steps in an attack scenario.

To specify consequence relationships between alerts, initial alert type, consequence

alert type, attributes to be matched, severity levels, and the timestamp difference

between initial and consequence alerts, will be considered.

The third step is alert aggregation, where a group of alerts are aggregated based

on situations. Here situations specify certain constraints that a group of alerts should

satisfy. Situation specification is based on alert types, attribute values, as well as

severity levels. In this paper, Debar and Wespi define seven situations. For example,

Situation 1 requires all alerts in a group should have the identical alert types, and

the same source IP addresses and destination IP addresses.

ACC has been implemented as a prototype system based on Tivoli Enterprise

Console (TEC). Debar and Wespi also did experiments to evaluate their techniques.

For example, they deployed a Web IDS and RealSecure network sensor to moni-

tor a Web server. PHF attacks against the Web server were detected by both IDSs.

Through examining the alert messages as well as attribute values, duplicate relation-

ships were identified.

3.2 Chronicles Based Approach

In 2003, Morin and Debar [23] proposed an alert correlation through chronicles

formalism. In a dynamic system, chronicles provide a mechanism to model event

temporal patterns and monitor the system’s evolution. Chronicles are widely used in

telecommunication systems. Morin and Debar adapt this technique to monitor secu-

rity events and perform alert correlation, which may potentially reduce the overall

volume of alerts, and improve the certainty of false alerts.

To specify a chronicle model, event patterns, related timestamp information, time

constraints among events, as well as other patterns and actions will be used for

modeling. Figure 1 shows an example of chronicles.
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In this chronicle, three events are considered port scan, ftp overflow, and re-

mote access, where their corresponding timestamps should be in increasing order

(i.e., t1 < t2 < t3), and their corresponding domain attributes (i.e., source and target)

should be equal. If all these patterns as well as constraints are satisfied, then this

chronicle is recognized and a synthetic alert is generated. Notice that usually only

synthetic alerts will be reported to security officers. So this may significantly reduce

the workload for security officers.

In addition to mitigating the alert flooding problem, chronicles can also improve

the capability of identifying false or true positives. This may be achieved through

examining contextual events (i.e., related events in the event pattern) in the chroni-

cle. Notice that benign events can also be included in chronicle models. An example

illustrated by Morin and Debar on how to improve the certainty of false positives is

that two FTP related benign events and one shell code related event are specified in

a chronicle. Shell code related event itself may imply some buffer overflow attacks.

However, under the context of some FTP activities, shell code related events are

very likely to be normal FTP activities. So if this chronicle is properly defined, and

then recognized based on events reported, security officers may consider that shell

code related alert in this chronicle has high possibility to be the false positive.

At the time of publishing this paper, this alert correlation approach based on

chronicles has not been fully implemented and tested. However, Morin and Debar

did do some experiments to test the effectiveness of their approach through some

alert logs generated in their networks.

4 Approaches Based on Prerequisites and Consequences of

Attacks

It is usually the case that when adversaries attack some networks and hosts, they

may use earlier attacks to prepare for the later ones. For example, attackers may first

launch IP sweep to find live hosts in a network, then they may scan open ports on

these live hosts to find vulnerable services, and finally launch buffer overflow attacks

against those vulnerable services on those live machines. This means that there are

logical connections (may also be called as causal relationships) between individual

attack steps. Linking these connections may lead to building attack scenarios.

Prerequisites and consequences based correlation approaches can help construct

attack scenarios so security officers will have more complete views about security

threats. Generally speaking, the prerequisite of an attack (also called as the pre-

condition) is the necessary condition to launch an attack successfully. For example,

to launch an Ftp Glob Expansion attack, the victim host should have a vulnera-

ble FTP service. The consequence of an attack (also called as post-condition) is the

possible outcome if the attack does succeed. For example, if an Ftp Glob Expansion

attack is launched successfully, the attacker may gain the administrator’s privilege

on the victim host. The modeling of prerequisites and consequences can be achieved

through first order logic or some attack modeling languages such as LAMBDA
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[8]. For example, we may use predicates ExistVulService(VictimIP, VictimPort)

and GainAdminAccess(VictimIP) to model attack Ftp Glob Expansion’s prerequi-

site and consequence, respectively.

The rationale of attack scenario construction is to discover if the success of

some earlier attacks may contribute to the success of some later attacks. After at-

tack modeling, to perform correlation, different mechanisms exist. For example, in

[25], the prerequisites and consequences can be instantiated through introducing

alert attribute values reported by IDSs. Next, the instantiated prerequisites and con-

sequences in different alerts are examined to see possible match or at least partial

match. Alerts with (partially) matching prerequisites and consequences are linked

together to build attack scenarios. These scenarios can help security officers under-

stand the logical connections between individual alerts.

Notice that in order to make these correlation approaches practical to production

networks, a comprehensive knowledge base about different attacks as well as the

corresponding prerequisites and consequences are critical. Also notice that since at-

tack scenarios can be discovered through matching prerequisites and consequences,

these approaches do not need to have any scenario templates. This means that novel

attack scenarios can be discovered. In the following, we survey a few typical ap-

proaches in this category.

4.1 Pre-condition/Post-condition Based Approach in MIRADOR

Project

In 2002, Cuppens and Miège [7] proposed an approach to correlate alerts from mul-

tiple, cooperative IDSs. This work is a further extension to [6], which is discussed in

Section 2. In [6], Cuppens focuses on alert base management, alert clustering, and

alert merging. While in [7], alert correlation, as the next step to alert merging, is the

major focus.

This paper proposes to build attack scenarios based on pre-conditions and post-

conditions of attacks. Each attack is modeled through attack modeling language

LAMBDA [8] (LAMBDA uses first order logic to model attacks). Each pre-

condition/post-condition has a set of predicates to define what is the condition

to be satisfied in order to launch an attack successfully, or the possible effect if

the attack succeeds. These predicates specify access privileges of attackers, source

and target systems’ status, and so forth. Examples of these predicates include ac-

cess level(user1, targetIP, local) and use service(targetIP, vul service).

This paper further proposes to automatically extract correlation rules based on

LAMBDA attack specification. Correlation rule generation can be divided into two

cases: direct correlation and indirected correlation [7].

• Direct Correlation. Given two attacks A1 and A2, assume the post-condition of

A1 is Post(A1), and the pre-condition of A2 is Pre(A2). Direct correlation, simply

speaking, is to examine predicates in Post(A1) and Pre(A2), to see if they are
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unifiable through a most general unifier θ . (Notice that special attention need to

be given when predicates involve knows.)

• Indirect Correlation. In this case, ontological rules are specified to denote the

relations between predicates. For example, as illustrated by Cuppens and Miège,

port 139 is open may suggest that the corresponding host has a Windows sys-

tem. Two attacks can be correlated based on a sequence of ontological rules

through a corresponding sequence of most general unifiers θ0,θ1, · · · ,θn.

After all correlation rules have been derived, alert correlation is straightforward. In

this procedure, alert data such as alert types (i.e., the corresponding attack classi-

fication), attribute values, as well as timestamps are extracted and evaluated based

on correlation rules (conditions). A sequence of correlated alerts result in an attack

scenario.

In addition to alert correlation, Cuppens and Miège also briefly discuss how to

deal with false negative problems. False negatives are those attacks that beyond the

capability of an IDS, so the IDS cannot detect them. Cuppens and Miège propose

to use abductive correlation to address this problem. The basic idea is to hypothe-

size some virtual alerts based on correlation functions. But the details on correlation

functions performing hypotheses is not clear in this paper. After generating virtual

alerts, existing alerts as well as virtual alerts are correlated through the aforemen-

tioned correlation techniques.

The correlation method proposed in this paper is a part of CRIM, a cooperative

module for intrusion detection systems. CRIM has been implemented and developed

in MIRADOR project. To evaluate the proposed approach, Cuppens and Miège did

experiments using two IDSs: Snort and e-Trust.

4.2 A Prerequisite and Consequence Based Approach

In the recent a few years, Ning el al. [25, 26] have systematically studied the alert

correlation problem and several papers have been published. In this section as well

as later sections, we will selectively present these methods. At this subsection, we

focus on [25, 26].

As mentioned earlier, each attack has several attributes such as SourceIP and

DestIP. And the prerequisite of an attack is the necessary condition to launch

the attack successfully, and the consequence of an attack is the possible out-

come (effect) if the attack succeeds. First order logic is used to describe prereq-

uisites and consequences. In [25, 26], formally speaking, an alert type (which

may be defined as attack classification in some other papers) is a triple (attr,

prereq, conseq), where attr is a list of attributes to describe the related attack,

prereq is a logical formula to represent the prerequisite, and conseq uses a set

of predicates to denote the consequence. As an example, given an alert type

Ftp Glob Expansion, its attribute list is {SourceIP, SourcePort, DestIP, DestPort,

StartTime, EndTime}, its prerequsite is ExistVulService(DestIP, DestPort), and its

consequence is {GainAdminAccess(DestIP)}.
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For each alert, we can instantiate the corresponding prerequisite and consequence

through replacing attribute names in the predicates with their attribute values. To

continue the above example, if an Ftp Glob Expansion alert has DestIP=10.10.2.1

and DestPort=21, the instantiated prerequisite and consequence are ExistVulSer-

vice(10.10.2.1, 21) and {GainAdminAccess(10.10.2.1)}, respectively.

After deriving all the instantiated prerequisites and consequences for the given

alerts, alert correlation is to examine these instantiated prerequisites and conse-

quences to see the possible (partial) match. The logical connections between alerts

are modeled as prepare-for relations in [25, 26]. Formally, given two alerts a1

and a2, a1 prepares for a2 if (1) one of the instantiated predicates in a1’s con-

sequence implies one of the instantiated predicates in a2’s prerequisite, and (2)

a1.EndTime< a2.StartTime.

Based on prepare-for relations, Ning et al. further define correlation graphs to

model attack scenarios. A correlation graph is a directed acyclic graph G, where

vertices in G represent individual alerts, and the edges denote the prepare-for rela-

tions between the corresponding vertices.

The techniques proposed in [25, 26] has been implemented and integrated into

a Toolkit for Intrusion Alert Analysis (TIAA) [1]. This toolkit can be downloaded

from http://discovery.csc.ncsu.edu/software/correlator/. Several data

sets have been used to test the effectiveness of this correlation method. As a re-

sult from [25, 26], Figure 2 shows a correlation graph generated using one of

the data sets (Scenario LLDOS 1.0) in 2000 DARPA intrusion detection scenario

specific data sets [22]. Notice that those alerts in the figure are reported by Re-

alSecure network sensors. The string in each node is the alert type followed by

an ID number. This correlation graph clearly discloses a multi-stage attack sce-

nario: the adversaries first use Sadmind Ping to probe vulnerable sadmind services,

then Sadmind Amslverify Overflow attacks are launched to get root privileges, next

mstream DDoS softwares are installed and run through Rsh, and finally the mstream

components communicate with each other (Mstream Zombie) and DDoS attacks

(Stream DoS) are launched. In addition to attack scenarios, Ning et al. also com-

puted many measures (e.g., false alert rates and detection rates) to evaluate their

methods.

4.3 Attack Hypothesizing and Reasoning Techniques

Under the framework of prerequisites and consequences based methods [25, 26],

Ning and Xu [27] propose an approach to addressing false negative problems. False

negatives are those attacks missed by IDSs, which may be critical for security offi-

cers to understand security threats.

To address this problem, Ning and Xu propose to hypothesize and reason about

missed attacks (or the unknow variations of known attacks). This approach is based

on their observation that when some intermediate attacks in a scenario are missed

by IDSs, this attack scenario may be split into multiple attack scenarios. However,
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Fig. 2 An alert correlation graph discovered in LLDOS 1.0 (cited from [25, 26]).

the alerts in these multiple scenarios may still satisfy certain constraints. If these

constraints can be specified, those alerts in different scenarios will be tested against

these constraints. Once certain constraints are satisfied, the possibly missed attacks

will be hypothesized, and the attribute values about these hypothesized attacks will

be derived. In addition, these hypothesized attacks are validated/invalidated based

on the original audit data; invalidated hypotheses are filtered out. Finally, based

on the existing alerts as well as hypothesized attacks, the hypothesized attacks are

consolidated and concise attack scenarios are constructed.

Simply speaking, a series of techniques are proposed in [27], which include at-

tack constraints extraction, attack hypothesizing, attribute inference, hypothesized

attack filtering, and hypothesized attack consolidation.

Attack constraints extraction is based on all attacks types that can be detected by

certain IDSs. These attacks are modeled through specifying their attributes, prereq-

uisites and consequences. Intuitively, given two attacks T1 and T2, an alert a1 of type

T1 may have a chance to prepare for another alert a2 of type T2 if one of the predi-

cates in T1’s consequence may imply one of the predicates in T2’s prerequisite. This

is defined as T1 may prepare for T2 in [27]. Additionally, if T1 and T2 are connected

through a chain of may-prepare-for relations, this is defined as T1 may indirectly pre-

pare for T2. A further analysis of these may-prepare-for or may-indirectly-prepare-

for relations can help to discover the equality constraints between the corresponding

attacks. Informally, an equality constraint between attacks T1 and T2 is the equality

relationship between T1 and T2’s attributes, which can be derived through match-

ing predicate names and checking attributes. For example, an equality constraint

between T1 and T2 may be T1.DestIP = T2.DestIP ∧T1.DestPort = T2.DestPort.
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In the stage of attack hypothesizing, each pair of alerts spreading in different

attack scenarios are evaluated to see if they satisfy certain equality constraints. If

constraints are satisfied, this means the corresponding pair of attacks have may-

indirectly-prepare-for relations. Thus those intermediate attacks between them are

hypothesized. These hypothesized attacks are the candidate attacks that may be

missed by IDSs.

After attack hypothesizing, attribute inference for these hypothesized attacks

is performed. The inference is based on the equality constraints between attacks.

For example, given an alert a1 with attack type T1, and a hypothesized attack a2

with type T2, assume that the equality constraint between T1 and T2 is T1.DestIP

= T2.DestIP ∧T1.DestPort = T2.DestPort. If we know that a1.DestIP = 10.10.3.1

and a1.DestPort =21, then it is straightforward to derive that a2.DestIP = 10.10.3.1

and a2.DestPort = 21. In addition, the possible range of timestamp information

about hypothesized attacks may also be derived.

Hypothesized attack filtering is used to rule out some incorrect hypotheses. This

is achieved through examining the audit data to see if there is any evidence to sup-

port or invalidate such hypotheses. For example, if an Ftp Glob Expansion attack is

hypothesized, and attribute values as well as the timestamp range are also derived,

but if there are no FTP activities during the related time frame, then this hypothesis

will be invalidated.

The last stage is to consolidate hypothesized attacks to build concise attack sce-

narios. It is noticed that the same attack may be hypothesized many times under

different contexts, which may introduce too many hypothesized attacks when we

combining different, partial attack scenarios. Ning and Xu propose to consolidate

hypothesized attacks if they are of the same attack type, their attribute values do not

conflict with each other, and their timestamps overlap. This technique can greatly

reduce the number of hypothesized attacks. For example, in one experiment, 137

hypothesized attacks were consolidated into 5.

Similar as those techniques proposed in [25, 26], the techniques proposed in

[27] also have been implemented and integrated into a Toolkit for Intrusion Alert

Analysis (TIAA) [1]. In the experiments, 2000 DARPA intrusion detection scenario

specific data sets [22] were used. RealSecure network sensors were deployed to

detect attacks. In order to test the hypothesizing and reasoning techniques, Sad-

mind Amslverify Overflow attacks were deliberately dropped in the alert data sets.

Thus it is possible that one complete attack scenario may be split into multiple sce-

narios. For example, as demonstrated in [27], in the data set of LLDOS 1.0 inside

part, one scenario (which is shown in Figure 2) was split into four. After applying

the techniques proposed in this paper, these four attack scenarios have been inte-

grated back into one, which is shown in Figure 3. This figure demonstrates that the

proposed techniques are effective because Sadmind Amslverify Overflow attacks are

correctly hypothesized.
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Fig. 3 An integrated correlation graph built from LLDOS 1.0 inside part (cited from [27])

5 Approaches Based on Multiple Information Sources

To protect digital assets, it is usually considered as a good practice to deploy mul-

tiple, complementary security systems into networks and hosts. These security sys-

tems may include firewalls, authentication services, antivirus tools, vulnerability

scanners, and intrusion detection systems. Generally, different systems have differ-

ent capabilities, and combing them can potentially provide better protection to our

networks and hosts.

The potentially better protection with multiple, heterogeneous security systems

also bring challenging problems to security officers. Specifically, as we mentioned

in the Introduction, one IDS may report thousands of alerts everyday, and multiple

security systems can make this situation much worse. Security officers will be over-

whelmed by such a high volume of alerts. In addition, different systems usually run

and act independently, and lack of the cooperation among them makes incidents in-

vestigation very difficult. In other words, how to perform correlation analysis among

tons of security events reported by different systems is quite challenging.

To address this challenging problem, many approaches have been proposed. For

example, Porras, Fong, and Valdes [30] propose a mission-impact-based approach,

where incidents are ranked according to their impact to the networks and hosts.
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Morin et al. [24] propose to define a unified data model to formalize different infor-

mation sources such as networks, hosts, vulnerability information, security systems,

and security events and alerts, which may greatly facilitate correlation analysis. Xu

and Ning [36] propose to combine similarity based method with prerequisites and

consequences based approach to perform alert correlation. The details of these meth-

ods will be given in the following subsections.

5.1 Mission-Impact-Based Approach

In 2002, Porras, Fong, and Valdes [30] proposed a mission-impact-based approach

to automating the correlation of alerts from different systems such as firewalls and

IDSs. Central to this approach is two knowledge bases (databases) incident handling

fact base and topology map of the protected network and hosts, and a sequence of

alert processing steps including alert filtering, topology vetting, priority computa-

tion, incident ranking, and alert clustering/aggregation.

The two aforementioned knowledge bases are very important to topology vet-

ting. Incident handling fact base is a comprehensive repository including all the

necessary information about attacks, vulnerabilities, and so forth. For example, in

the fact base developed by Porras, Fong, and Valdes, over 1000 different attacks

that can be detected by RealSecure, Snort, or EMERALD [46] are included. Vulner-

ability information includes incident descriptions, related hardware platforms and

application versions, operating system versions, network service information, and

so on.

Topology map of the protected networks and hosts includes topological and con-

figuration information about the network, for example, host IP addresses and names,

network services run by each host, operating systems versions, and hardware plat-

forms. The topology map should be updated dynamically, which may be done by

NAMP [13].

In the stage of alert filtering, users choose to subscribe the alerts that are im-

portant to their networks and hosts. Based on the mission of networks, users can

also dynamically update their subscription, which may reduce the workload of alert

processing for their networks.

In the stage of topology vetting, based on incident handling fact base and topo-

logical map of protected networks and hosts, a relevance score is computed for each

alert, which represents the degree of dependency between the incident (represented

as an alert) and the related network and host configurations. For example, if the

incident requires the target machine to be a Windows system, but the network and

host configurations show that the only operating system in this machine is Linux,

then the relevance score for the corresponding alert should be low. In this paper,

relevance scores are in the range of 0 to 255.

Priority computation shows the degree that an incident affects the mission of the

networks. As defined in [30], “the mission is the underlying objective for which the

computing resources and data assets of the monitored network are brought together
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and used.” Based on this definition, priority score computation needs to consider

two factors:

• the computing resources and data assets, and

• security incidents that greatly affect networks.

In a network, the computing resources and data assets can include web servers, file

servers, database management systems, important data files (e.g., the source code

of a program), and user accounts. In addition, security officers also need to specify

in what security incidents they are interested, for example, the incidents performing

PRIVILEGE VIOLATION or DENIAL OF SERVICE.

In the stage of incident ranking, for each alert, an incident rank is computed to

represent the overall impact that the incident brings to target networks, as well as the

probability that the incident is successful. This computation is performed through

Bayes networks, where relevance, priority, and other related factors are all involved.

Alert clustering is the last stage of alert processing in this paper. Notice that

here clustering analysis is performed through the clustering policy. For example,

several alerts may be grouped if they are of the same incident types, and with the

same source IP addresses and destination IP addresses. This stage is similar to those

similarity based alert correlation.

The proposed techniques have been developed as a prototype system Mission Im-

pact Intrusion Report Correlation System (M-Correlator). To test the effectiveness

of M-Correlator, experiments were conducted in a simulated network, where multi-

ple security systems were deployed such as RealSecure, eBayes-TCP, eXpert-Net,

and Checkpoint firewalls. In one of the experiments, 79 alerts were produced by

security systems, and after a sequence of processing, only 4 clusters were generated

in alert clustering/aggregation.

5.2 A Data Model M2D2 for Alert Correlation

To facilitate alert correlation and threat analysis, Morin et al. [24] proposed a formal

data model M2D2 in 2002. In M2D2, four types of information are formalized:

the features of networks and hosts under monitoring and protection, vulnerability

information, security systems and tools, and events, alerts and scans (generated by

vulnerability scanners). M2D2 is presented using Z and B formal methods [24].

In the formal specification about the features of networks and hosts, network

topology, products (e.g., operating systems, and software applications) and other

information are included. To model network topology, hypergraph model [35] has

been extended, and other information such as host IP address and name mapping

is also included. To formalize product information, vendor names, product names,

product versions, and product types are necessary.

Vulnerabilities usually are specific to certain network and host configurations.

For example, a vulnerability may only exist if a specific version of FTP servers

are installed in Windows machines. Other related information include vulnerability
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names, privilege requirement to exploit vulnerabilities, and the possible effect if

a vulnerability is exploited successfully (e.g., privilege escalation, and denial of

service). These are all modeled in [24].

In the modeling of security systems and tools, Morin et al. focus on IDSs and

vulnerability scanners. IDS detection methods (misuse detection or anomaly detec-

tion), detection capability (e.g., how many different signatures used in detection), as

well as other necessary information (e.g., messages reported when certain attacks

detected) may be included in the modeling.

Events usually are low-level activities observed by systems. In [24], five types

of events are modeled: IP events, UDP events, TCP events, HTTP events, and web

log events. Necessary information such as timestamps are also involved. Alerts are

reported by IDSs, and scans are generated by vulnerability scanners. Their related

information such as reported messages, source and target IP addresses may also be

included in their modeling.

To demonstrate that M2D2 can facilitate alert correlation, several examples of

alert correlation methods have been enumerated. In one example, the alerts reported

by host based IDS and network based IDS are aggregated if their target hosts are the

same.

5.3 Triggering Events and Common Resources Based Approach

In 2004, Xu and Ning [36] proposed to correlate alerts from multiple security sys-

tems through triggering events and common resources. This approach is based on

the observations that (1) though different alerts may be reported by different secu-

rity systems, the underlying events that trigger these alerts usually are the same;

(2) network and host configurations can help assess the severity of alerts; (3) in the

prerequisites and consequences based correlation approach, the specification of pre-

requisites and consequences are time-consuming and sometimes even error-prone.

This situation can be improved if network and computer resources (e.g., network

services) are introduced into attack modeling.

Based on the aforementioned key observations, the correlation approach in [36]

can be divided into three steps: alert clustering through triggering events, alert sever-

ity evaluation through examining if alerts are consistent with the corresponding net-

work and host configurations, and attack scenario construction through input and

output resources.

Given an alert, Triggering events are low level events (e.g., an FTP connection)

that trigger this alert. For example, a malicious sadmind NETMGT PROC SERVICE

Request event may trigger Sadmind Amslverify Overflow alert for RealSecure net-

work sensors. Notice that to describe a triggering event, attribute values are neces-

sary, for example, source IP addresses, destination IP addresses, timestamps, and

so on. To perform alert clustering, all the triggering events are discovered for each

alert in the data set. Next, the alerts with similar triggering events are grouped,

where similar events mean that either events are the same, or one event can imply
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another (e.g., the recursive deletion of a directory /user/Alice/programs implies the

deletion of a file /user/Alice/programs/HelloWorld.c).

In the next stage, the severity of alerts in clusters are assessed through consistency

(or inconsistency) evaluation between alerts and their network and host configura-

tions. Intuitively, an alert is consistent with a related host configuration, if the corre-

sponding attack may be successful based on the host configuration information. For

example, if an attack HTTP IIS URL Decoding is targeting a host 10.10.5.1 on port

80, while this host does not have any IIS applications and port 80 is not open, then

this attack is not consistent with the host configuration, and cannot be successful.

This also means the corresponding alert is of low severity and possibly is a false

positive.

In the third stage, attack scenarios are built through input and output resources.

Intuitively, input resources are the necessary resources to launch an attack success-

fully, and output resources are the resources that an attack can provide if it succeeds.

Resources include network services, access privilege, important files, and so on. As

an example, the input resource of an attack Ftp Glob Expansion is a vulnerable

FTP service on a victim host, and the output resource is the administrative priv-

ilege on the victim host. The correlation model in [25, 26] has been extended to

accommodate input and output resources. To find logical connections in alerts, in-

put and output resources for each alert are first enumerated. Next, output and input

resources are examined, and if one of the output resources in an earlier alert can

imply one of the the input resources in a later alert, the two corresponding alerts

will be connected. A sequence of these connections can result in an attack scenario.

The proposed techniques are evaluated through DARPA Cyber Panel Program

Grand Challenge Problem Release 3.2 (GCP) [10], where 10 different security sys-

tems are involved. In one data set, 529 alerts were generated. And clustering analysis

resulted in 512 clusters. The next step of severity evaluation identified several low

severity alerts. Finally attack scenario construction brought 10 scenario graphs.

6 Privacy Issues in Alert Correlation

In recent years, the threat from large scale attacks such as worms and distributed

denial of service attacks is increasing. For example, as estimated by Computer Eco-

nomics, Code Red has resulted in an economic loss of about $ 2.6 billion [4]. To

defend against these attacks, it is desirable that different organizations and compa-

nies cooperate in sharing attack related data and performing correlation analysis.

At present, there are a few organizations or projects that focus on collecting data

over the Internet, and then performing analysis. Examples include DShield [33],

PREDICT [28], and Cyber-TA [16].

When security data is collected from different companies and organizations,

the privacy concerns from those different data owners have to be satisfied before

data can be shared. Thus the appropriate data sanitization techniques that can fulfill

data owners’ requirement are necessary. As an effort to address privacy concerns,
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DShield allows data contributors to perform partial or complete obfuscation to desti-

nation IP addresses in their data sets. Partial obfuscation changes the first byte of an

IP addresses to decimal 10, and complete obfuscation replaces a whole IP address

to a fixed value.

Beside privacy concerns from data owners, security analysts are also interested

in the utility of sanitized data sets. To be more specific, the correlation analysis of

sanitized data sets should still provide useful information to help them understand

security threats. However, since data sanitization usually bring negative impact to

the later correlation analysis, appropriate techniques that can preserve the utility of

sanitized data are equally important.

To address these challenges, several privacy-preserving alert sharing and correla-

tion techniques have been proposed in recent years [21, 37, 38]. In this section, we

give an overview of these techniques.

6.1 An Approach on Alert Sharing and Correlation

In 2004, Lincoln, Porras, and Shmatikov [21] proposed an approach to perform

privacy-preserving alert sharing and correlation. Several issues have been discussed

in [21] including the threat model to alert sharing, alert sharing and sanitization,

possible analysis of sanitized alerts, and performance issues.

Alert data can be generated from many security systems, and firewalls, IDSs, and

antivirus tools are the main focus in [21]. Alert attributes reported by these systems

include source IP addresses, destination IP addresses, port numbers, timestamps,

virus infected files, and so on. Many attributes are considered sensitive and need

to be sanitized, for example, IP addresses in an organization’s network, and criti-

cal files. Other information such as network and host configurations may also be

considered as sensitive. Notice that in order to achieve alert sharing and correlation,

alert data repositories, where data is obtained from many data owners, are assumed

to be at least partially available to different users including attackers. In addition, the

threat model in [21] also lists several potential attacks to this alert sharing scheme,

for example, dictionary attacks to guess the original values of sanitized attributes,

probe-response attacks to learn the details of some networks, and even data reposi-

tory corruption attacks. The threat model can help us justify why certain techniques

are necessary (e.g., different methods for alert sanitization).

To perform alert data sharing, different data contributors can submit their data

to a single repository they choose, or spread alert data into multiple repositories.

To better protect data submission, randomized alert routing is proposed, which can

improve the anonymity for data sources (data contributors). But before data con-

tributors send out alert data, alert sanitization should be performed. In other words,

sensitive attributes in an alert should be protected and their values are not published

in alert repositories. [21] proposes several options to santize attributes, for exam-

ple, mapping to random values, removing certain parts of data, performing hash

functions (e.g., SHA-1) and keyed hash functions (e.g., HMAC), introducing ran-
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domization to some threshold values, and so on. What sanitization methods should

be chosen is decided by privacy policy. As a special case, the authors suggest to

perform keyed hash functions to IP addresses inside data owners’ networks, while

perform hash functions to outside IP addresses.

After alert sanitization, another critical task is to perform correlation to sanitized

alerts. In [21], several different analyses are discussed such as trend analysis, inten-

sity analysis, and alert aggregation. To what degree these analyses can be performed

are closely related to the corresponding sanitization techniques. For example, to dis-

cover how many different IP addresses are involved in certain attacks, if only hash

functions are performed to these IP addresses, then counting different hash values

may get the answer.

Considering many security systems may contribute alerts, the number of alerts

submitted to data repositories can be very large. This requires that alert sharing and

sanitization to be efficient. This performance issue has been discussed in [21]. And

experiments were conducted. In their experiments, two data sets were used: one

was collected in their own network with 4,224,122 alerts, and the other was from

DShield with 19,146,346 alerts. Experimental results show that hashing or keyed

hashing to IP addresses can be finished in about 30 seconds for every 1 million

alerts.

6.2 Generalization and Perturbation Based Approaches

In 2005 and 2006, Xu and Ning [37, 38] proposed privacy-preserving correlation

approaches through applying attribute generalization and perturbation techniques.

They mainly focus on two problems, one is how to perform alert sanitization, and

the other is how to perform correlation to sanitized alerts. For the first problem, at-

tribute generalization as well as perturbation are proposed. For the second problem,

probability based approach is presented.

Xu and Ning propose one generalization and three perturbation based schemes

to sanitize alerts. These schemes are independent to each other, but can also be

combined together. In the generalization based scheme, original attribute values are

generalized to appropriate high level concepts (i.e., general values). For example,

IP addresses (e.g., 10.10.5.2) can be generalized to their corresponding /24 network

addresses (e.g., 10.10.5.0/24), and processing time (e.g., 56 seconds) can be gener-

alized to an interval (e.g., (50,75]).
To perform generalization for an attribute, a concept hierarchy for this attribute

is usually necessary. Intuitively, a concept hierarchy is a way to organize differ-

ent concepts (including original attribute values) into different abstraction levels.

Alert attributes can be categorical (e.g., IP addresses) or continuous (e.g., process-

ing time). As an example concept hierarchy for categorical attributes, individual IP

addresses can be first generalized into /24 networks, and then to /16 networks. For

a continuous attribute, to design a concept hierarchy, the attribute domain can be

partitioned into different intervals and organized into different levels. For example,



Correlation Analysis of Intrusion Alerts 89

a domain of [0,100] can be first divided into 4 intervals [0,25], (25,50], (50,75], and

(75,100], and then [0,25] and (25,50] can be combined into [0,50], and (50,75] and

(75,100] can be combined into (50,100].
In the generalization based sanitization, an appropriate general value has to be

chosen to replace the original value. This process is guided through entropy (for

categorical attributes such as IP addresses) or differential entropy (for continuous

attributes such as processing time) [37, 38, 5].

• Given a concept hierarchy for a categorical attribute a, assume an original value

vo is sanitized to a general value vg. The entropy of attribute a with respect to vg

is defined as Ha(vg) = −∑n
i=1 p(a = vi) log2 p(a = vi), where n is the number

of original values under vg in the concept hierarchy.

• Given a concept hierarchy for a continuous attribute a, assume an original value

vo is sanitized by an interval vg. The differential entropy of attribute a with

respect to vg is defined as Ha(vg) = −
∫

vg
f (a) log2 f (a)da, where f (a) is the

probability density function for attribute a over interval vg.

Entropy or differential entropy values can be computed based on attribute distribu-

tions, then appropriate general values can be chosen based on entropy value require-

ment specified by privacy policy.

In the perturbation based sanitization, three schemes are proposed in [37, 38].

In the first scheme, artificial alerts are injected into the original data set to hide

original attribute values. Sensitive attribute values in artificial alerts are generated

through randomization based on concept hierarchies and attribute distributions. In

the second scheme, the original values of sensitive attributes are randomized through

concept hierarchies. For example, an IP address 10.10.5.3 may be randomized to

10.10.5.99 under the same /24 network. Notice that in this scheme, to improve the

data utility, if original attribute values are the same, then their randomized values are

also identical. In the third scheme, a data set can be partitioned into multiple subsets

based on timestamp information, and then each subset is randomized independently.

Thus in this scheme, the same original attribute values in different subsets may

not be randomized to the identical values. This scheme may reduce the impact of

potential probe-response attacks.

After alert sanitization, the next step is correlation analysis of sanitized alerts.

Two issues are discussed in [37, 38]: one is how to compute the similarity values

between sanitized attributes, and the other is how to build attack scenarios for san-

itized data sets. To address similarity computation, a probability based approach is

proposed. Given two sanitized values, the basic idea is to calculate the probability

that how possible the sanitized attributes may have the same original values, and

then use this probability value as their similarity value. For example, if both san-

itized IP addresses are 10.10.5.0/24, and IP addresses are in uniform distribution

in subnet 10.10.5.0/24, then the similarity between these two sanitized attributes is
1

256 . To build attack scenarios for sanitized data sets, Xu and Ning extend their pre-

vious work on building attack scenarios for original data sets [25, 26], and propose

a probability based approach. Specifically, this approach identifies logical connec-
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tions between sanitized alerts as long as there is a chance that the corresponding

original alerts may have prepare-for relations.

To evaluate the proposed privacy-preserving alert correlation approach, Xu and

Ning did experiments using 2000 DARPA intrusion detection scenario specific data

sets [22]. They sanitized the destination IP address in each alert to the correspond-

ing /24 network address. Similarity values were computed, attack scenarios were

constructed, and different measures such as false alert rates and detection rates were

also calculated.

7 Summary

In this chapter, we have discussed the alert correlation approaches proposed by dif-

ferent researchers in recent years. We divide these approaches into four categories:

similarity based methods, predefined attack scenario based methods, prerequisites

and consequences based methods, as well as multiple information sources based

methods. In each category, representative approaches are presented. In addition, pri-

vacy issues in the field of alert correlation are also addressed.
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An Approach to Preventing, Correlating, and

Predicting Multi-Step Network Attacks

Lingyu Wang1 and Sushil Jajodia2

Abstract To protect networks from malicious intrusions, it is necessary to take

steps to prevent attacks from succeeding. At the same time, it is important to rec-

ognize that not all attacks can be averted at the outset; attacks that are successful

to some degree must be recognized as unavoidable and comprehensive support for

identifying and responding to attacks is required. This essay will describe the re-

cent research on attack graphs that represent known attack sequences attackers can

use to penetrate computer networks. It will show how attack graphs can be used

to compute actual sets of hardening measures that guarantee the safety of given

critical resources. Attack graphs can also be used to correlate received alerts, hy-

pothesize missing alerts, and predict future alerts, all at the same time. Thus, they

offer a promising solution for administrators to monitor and predict the progress of

an intrusion, and take appropriate countermeasures in a timely manner.

1 Introduction

Real threats to a network usually come from skilled attackers who employ multiple

attacks to evade security measures and to gradually gain privileges. Such multi-step

network intrusions can often infiltrate a seemingly well guarded network. Most ex-

isting vulnerability scanners and intrusion detection systems (IDSs) can only report

isolated vulnerabilities and attacks, which may not seem to be serious threats until
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they are cleverly combined by attackers. A penetration test may raise alarms about

potential multi-step intrusions, but the effectiveness of such a test heavily depends

on the capability of red team and the results are prone to human errors. Attack

response based on isolated alerts is generally impractical due to the well-known

impreciseness of IDSs.

In this essay, we describe a comprehensive approach to preventing, correlat-

ing, and predicting multi-step network intrusions. The approach is based on attack

graph, which encodes knowledge about the network to be protected. More specif-

ically, an attack graph represents all possible sequences of vulnerabilities that at-

tackers may exploit during a multi-step intrusion. Attack graphs can be obtained

through existing tools, such as the Topological Vulnerability Analysis (TVA) sys-

tem [16] that can model 37,000 vulnerabilities taken from 24 information sources

including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort.

Although attack graphs reveal the threats, they do not directly provide a solu-

tion to prevent attackers from realizing such threats. In the first part of the essay,

we describe a method to compute optimal network hardening solutions [25, 47].

Specifically, we view each vulnerability as a Boolean variable, and we derive a logic

proposition to represent the negation of given critical resources in terms of initially

satisfied security-related conditions. This proposition is thus the necessary and suf-

ficient condition for protecting the critical resources. To make hardening options

explicit, we transform this logic proposition into its disjunctive normal form (DNF).

Each disjunction in the DNF provides a different option in hardening the network.

We then choose options with the minimum cost based on given assumptions on the

cost of initial conditions.

This approach to preventing multi-step intrusions by hardening the network has

advantages over previous approaches of computing the minimal cut set of an attack

graph [38, 17]. The key difference lies in that a minimal cut set of an attack graph

does not capture the interdependency between vulnerabilities, whereas this approach

does. This is important because a solution based on minimal cut sets is not directly

enforceable, since some of the vulnerabilities are consequences of exploiting other

vulnerabilities, and the consequences cannot be removed without first removing the

causes. For example, the solution may require an FTP-related vulnerability to be

removed, but the vulnerability cannot be removed without first removing another

vulnerability that enables attackers to install the vulnerable FTP service.

Although off-line network hardening is an ideal solution in preventing multi-

step intrusions, it is not always an option due to its costs and potential impact on

availability. In practice, we may need to live with some of the vulnerabilities, and

to take countermeasures only when a multi-step intrusion is actually happening. We

thus need real-time detection and prediction methods for multi-step intrusions. In

the second part of the essay, we describe a method to correlate isolated attacks into

attack scenario and predict possible future attacks in real time [45, 46]. The method

can thus help administrators to monitor and predict the progress of a multi-step

intrusion, and take appropriate countermeasures in a timely manner.

Most previous alert correlation methods are designed for off-line applications,

such as computer forensics. The defense against multi-step intrusions in real time
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brings new challenge to those methods. Those methods typically have a computa-

tional complexity and memory requirement both linear in the number of received

alerts. This implies the number of alerts that can be processed for correlation will

be limited by available resources, such as memory. This may be okay for an off-line

application where the number of alerts is already known and resources can be allo-

cated accordingly. However, a live attacker aware of this fact can prevent two attack

steps from being correlated by either passively delaying the second step or actively

injecting bogus alerts between the two steps. In either case, the correlation effort is

completely defeated.

To address the above limitation of previous methods, we propose a novel method

for efficiently correlating isolated attacks into attack scenario. We only keep the

last alert matching each of the known vulnerabilities. The correlation between a

new alert and these alerts is explicitly recorded, whereas the correlation with other

alerts is implicitly represented using the temporal order between alerts. The time

complexity and memory requirement of this method are both independent of the

number of received alerts, meaning the efficiency does not decrease over time. This

approach can correlate two alerts that are separated by arbitrarily many others. It is

thus immune to deliberately slowed intrusions and injected bogus attacks.

We then extend the method for the hypothesis and prediction of intrusion alerts.

The method compares knowledge encoded in a queue graph with facts represented

by correlated alerts. An inconsistency between the knowledge and the facts implies

potential attacks missed by IDSs, whereas extending the facts in a consistent way

with respect to the knowledge indicates potential future attacks. The result of the

analysis is represented in a compact way, such that all transitive edges are removed,

and those alerts that are indistinguishable in terms of correlation are aggregated.

Empirical results indicate that this method can fulfill all the tasks in one pass and

faster than the IDS can report alerts.

The rest of this chapter is organized as follows. The next section reviews related

work. Section 3 states basic concepts and assumptions. Section 4 discusses the net-

work hardening method. Section 5 devises the queue graph-based methods for alert

correlation, hypothesis, and prediction. Section 6 concludes the chapter.

2 Related Work

Alert correlation techniques aim to reconstruct attack scenarios from isolated alerts

reported by IDSs, using prior knowledge about attack strategies [7, 9, 4, 11, 41]

or alert dependencies [3, 21, 23]. Some techniques aggregate alerts with similar

attributes [2, 6, 39, 44] or similar statistical patterns [18, 30]. Hybrid approaches

combine different techniques for better results [23, 31, 51]. Alert correlation tech-

niques are also used for other purposes rather than analyzing multi-step intrusions,

such as to relate alerts to the same thread of attacks [15]. The privacy issue of alert

correlation has recently been investigated [52]. Alert correlation is employed to deal

with insider attacks [34, 32].
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A number of tools are available for scanning network vulnerabilities, such as

Nessus [10], but most of them can only report isolated vulnerabilities. On the re-

search front, attack graphs are constructed by analyzing the inter-dependency be-

tween vulnerabilities and security conditions that have been identified in the target

network [12, 53, 29, 5, 26, 35, 40, 36, 1, 38, 16]. Such analysis can be either for-

ward starting from the initial state [29, 40] or backward from the goal state [35, 38].

Model checking was first used to analyze whether the given goal state is reachable

from the initial state [35, 33] but later used to enumerate all possible sequences of

attacks between the two states [38, 17].

The explicit attack sequences produced by a model checker face a serious scal-

ability issue, because the number of such sequences is exponential in the number

of vulnerabilities multiplied by the number of hosts. To avoid such combinatorial

explosion, a more compact representation of attack graphs was proposed in [1]. The

monotonicity assumption underlies this representation, i.e., an attacker never relin-

quishes any obtained capability. This newer representation can thus keep exactly

one vertex for each exploit or security condition, leading to an attack graph of poly-

nomial size (in the total number of vulnerabilities and security conditions). In this

chapter we shall assume such a compact representation of the attack graph.

Algorithms exist to find the set of exploits from which the goal conditions are

reachable [1]. This eliminates some irrelevant exploits from further consideration

because they do not contribute to reaching the goal condition. However, this re-

sult may still include many irrelevant exploits, even though the goal condition is

reachable from them. The reason lies in that the reachability is a necessary but not

sufficient condition for an exploit to actually contribute to reaching the goal condi-

tion. On the other hand, this solution is necessary and sufficient for a goal condition

to be satisfied.

The minimal critical attack set is a minimal set of exploits in an attack graph

whose removal prevents attackers from reaching any of the goal states [38, 17, 1].

The minimal critical attack set thus provides solutions to harden the network. How-

ever, the method ignores the critical fact that consequences cannot be removed with-

out removing the causes. The exploits in their solutions usually depend on other

exploits that also need to be disabled. The solution is thus not directly enforce-

able. Moreover, after taking into account those implied exploits the solution is no

longer minimal. To support interactive analysis of attack graphs, a relational model

for encoding attack graphs and corresponding queries is proposed [50]. Preliminary

efforts on quantifying vulnerabilities are described in [49, 48].

Attack scenarios broken by missed attacks are reassembled by clustering alerts

with similar attributes [24], and those caused by incomplete knowledge are pieced

together through statistical analyses [31, 30]. Instead of repairing a broken scenario

afterwards, this method can tolerate and hypothesize missed attacks at the same

time of correlation. Real-Time detection of isolated alerts is studied in [19, 28].

Some products claim to support real-time analyses of alerts, such as the Tivoli Risk

Manager [14]. Designed for a different purpose, the RUSSEL language is similar to

this approach in that the analysis of data only requires one-pass of processing [13].
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3 Preliminaries

Our discussions will involve concepts in both topological vulnerability analysis and

intrusion alert correlation. This chapter reviews relevant concepts and states our

assumptions. First, Section 3.1 discusses attack graphs. Section 3.2 then discusses

intrusion alerts and their correlation.

3.1 Attack Graph

Attack graphs represent prior knowledge about network connectivity and the depen-

dency between vulnerabilities. There have been two different representations for an

attack graph. First, an attack graph can explicitly enumerate all possible sequences

of vulnerabilities that an attacker can follow, that is attack paths [38, 17]. However,

such graphs are subject to inherent combinatorial explosion in the number of attack

paths.

Second, an attack graph can be represented by the dependency relationships

among vulnerabilities, and attack paths are encoded implicitly [1]. This representa-

tion does not lose any information under the monotonicity assumption, which states

that an attacker never need to relinquish any obtained capability. The resulting at-

tack graph has no duplicate vertices, and hence has a polynomial size in the number

of vulnerabilities multiplied by the number of connected pairs of hosts. We shall

assume this latter notion of attack graphs.

An attack graph is usually represented as a directed graph with two type of ver-

tices, exploits and security conditions (or simply conditions when no confusion is

possible). We denote an exploit as a tuple (v,hs,hm,hd). This indicates an exploita-

tion of the vulnerability v on the destination host hd , initiated from the source host

hs and through an intermediate host hm. For exploits involving two hosts (no inter-

mediate host) or one (local) host, we use (v,hs,hd) and (v,h), respectively.

Similarly, a security condition is a triple (c,hs,hd) that indicates a security-

related condition c involving the source host hs and the destination host hd . When a

condition involves a single host, we simply write (c,h). Examples of security condi-

tions include the existence of a vulnerability or the connectivity between two hosts.

While there might be abundant security conditions in each host, we only include

those that are relevant to at least one exploit in the attack graph.

Two types of directed edges inter-connect exploits and conditions (no edge exists

directly between exploits, nor between conditions). First, an edge can point from a

condition to an exploit. Such an edge denotes the require relation, which means the

exploit cannot be executed unless the condition is satisfied. Second, an edge pointing

from an exploit to a condition denotes the imply relation, which means executing

the exploit will satisfy the condition. For example, an exploit usually requires the

existence of the vulnerability on the destination host and the connectivity between

the two hosts. We formally characterize attack graphs in Definition 0.1.
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Definition 0.1. Given a set of exploits E, a set of conditions C, a require relation

Rr ⊆C×E, and an imply relation Ri ⊆ E×C,

• We call the directed graph G(E∪C,Rr∪Ri) an attack graph (E∪C is the vertex

set and Rr ∪Ri the edge set).

• We use→ for the prepare-for relation Ri ◦Rr (◦ denotes the composition).

Example 0.1. Figure 1 depicts a simplified example of attack graph. The vertices

in plaintext denote security conditions, and those inside ovals denote exploits. The

attack graph shows an attacker having user privilege on host h3 can exploit the SAD-

MIND BUFFER OVERFLOW (Nessus ID 11841) vulnerability on hosts h1 and h2

and obtain user privilege on the destination hosts. We can see that after an attacker

has obtained user privilege on host h1 (or h2), he/she can then exploit host h2 (or

h1) from either host h3 or host h1.

(h1,sadmind_service)

(h2,h1,sadmind_bof) (h3,h1,sadmind_bof)

(h3,user_priviledge)

(h3,h2,sadmind_bof)

(h2,sadmind_service)

(h1,h2,sadmind_bof)

(h1,user_priviledge)

(h2,user_priviledge)

Fig. 1 An Example of Attack Graph

One important aspect of attack graphs is that the require relation is always con-

junctive, whereas the imply relation is always disjunctive. More specifically, an

exploit cannot be realized until all of its required conditions have been satisfied,

whereas a condition is satisfied if any of the realized exploits implies the condition.

Exceptions to the above requirements do exist. First, an exploit with multiple vari-

ations may require different sets of conditions, whence the require relation for this

exploit is disjunctive (between these sets of conditions). This case can be handled

by having a separate vertex for each variation of the exploit such that the require

relation for each variation is still strictly conjunctive.

On the other hand, a collection of exploits may jointly imply a condition whereas

none of them alone can do so, whence the imply relation becomes conjunctive for

this condition. This case can be handled by inserting dummy conditions and exploits

to capture the conjunctive relationship. For example, suppose both e1 and e2 are

required to make a condition c satisfied. We insert two dummy conditions c1 and c2
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and a dummy exploit e3 into the attack graph. The edges are inserted such that e1

and e2 imply c1 and c2, respectively, and c1 and c2 are required by e3, which in turn

implies c. Now the conjunctive relationship that both e1 and e2 are required for c to

be satisfied is encoded in the fact that e3 requires both c1 and c2.

We assume attack graphs can be obtained with existing tools, such as the afore-

mentioned Topological Vulnerability Analysis (TVA) system [16]. We assume the

attack graph is updated in a timely fashion upon changes in network topology and

configuration. We assume the attack graph can be placed in memory. For a given

network, the size of an attack graph can usually be estimated and the required mem-

ory can be accordingly allocated. We do not assume external host addresses to be

trustful and use wildcards to match them. This may cause false correlations when

multiple attackers concurrently launch similar attacks while they do not intend to

cooperate with each other.

3.2 Intrusion Alert and Correlation

Intrusion alerts are reported by IDS sensors placed in a network, and they typically

have attributes like the type of events, the address of the source and destination

host, the time stamp, and so on. Our discussion does not depend on specific format

of alerts, so we simply regard each alert as a relational tuple with a given (usually

implicit) schema. For example, with the schema (event type, source IP, destination

IP, time stamp), an alert will have the form (RPC portmap sadmind request UDP,

202.77.162.213, 172.16.115.20, 03/07-08:50:04.74612).

We adopt a vulnerability-centric correlation approach, which first matches alerts

with exploits and then correlate them using the knowledge encoded in an attack

graph. To match alerts with exploits, the event type attributes of alerts need to be

mapped to the vulnerability attributes of exploits using domain knowledge, such as

the correspondence between Snort identifiers and Nessus identifiers [27]. For sim-

plicity, we denote the matching between alerts and exploits as a function Exp()
from the set of alerts A to the set of exploits E (in some cases an event type matches

multiple vulnerabilities, which will be handled by creating a copy of alert for each

matched exploit, indicating an simultaneous exploitation of multiple vulnerabili-

ties).

Starting from the knowledge about one’s own network, the vulnerability-centric

correlation approach can mitigate the negative impact of disruptive alerts. For ex-

ample, if the attacker blindly launches some Windows-specific attacks on UNIX

machines, then the reported alerts will be ignored by the approach. On the other

hand, the limitation lies in that relevant alerts do not always match exploits. For

example, an ICMP PING matches no vulnerability, but it may signal the probing

preparation for following attacks. Such relevant alerts can be identified based on at-

tack graphs and the knowledge about alert types. We extend the concept of exploits

to include alert types in the place of vulnerability attributes. Such special exploits

are added to attack graphs and the function Exp is extended accordingly.
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As we shall discuss in Section 5, the correlation methods critically depend on

temporal characteristics of alerts, such that the order of arrivals and timestamps. In

practice, those characteristics will exhibit much uncertainty due to various delays

in hosts and network, especially when alerts are collected from multiple sensors

placed differently in a network. We shall address such temporal impreciseness in

more details in later sections. We assume the clocks of IDS sensors are loosely

synchronized with the correlation engine. This can be achieved in many different

ways depending on specific IDS systems. For example, Snort has built-in support of

automatic time synchronization through the network time protocol (NTP) [37]. We

leave the case where attackers may temper with the clocks as future work.

4 Hardening Network To Prevent Multi-Step Intrusions

This section discusses how to prevent multi-step intrusions through hardening the

network. First, Section 4.1 gives intuitions via examples. Section 4.2 then formalizes

the hardening problem and provides a graph-based algorithm to find possible hard-

ening options. Finally, Section 4.3 studies how to pick a option with the minimal

cost.

4.1 A Motivating Example

Ideally, we want to prevent all sequences of multi-step attacks that may endanger

given important resources in a network. We can achieve this goal through harden-

ing the network, such as removing vulnerabilities and modifying network config-

urations. However, each such network hardening option will incur a cost, and it is

desirable to keep overall costs as low as possible. The optimal solution should prov-

ably prevent any attacker from reaching a given goal (corresponding to the resources

to be guarded) and yet incur the lowest cost. Such a desired solution is usually not

apparent from the attack graph itself. This is true even for relatively simple scenario,

due to multiple interleaved attack paths leading to the goal condition. To illustrate,

consider the following example.

Example 0.2. An attack graph similar to those in [38, 1, 17] is given in Figure 2.

Notice that some modeling simplifications have been made, such as combining con-

nectivity at different layers. The details of the attack scenario (for example, network

topology, services, and operating systems) are also omitted here. In the figure, ex-

ploits appear as ovals, and conditions as plain text (with the goal condition shaded).

As an example of attack paths, the attacker can first establish a trust relationship

from his machine host 0 to host 2 (the condition (trust 0,2)) via the ftp .rhosts

vulnerability on host 2 (the exploit ( f t p rhosts,0,2)), then gain user privilege on

host 2 (the condition (user,2)) with an rsh login (the exploit (rsh,0,2)), and finally

achieve the goal condition (root,2) using a local buffer overflow attack on host 2



An Approach to Defending Against Multi-Step Attacks 101

(the exploit (local bo f ,2)). The following are some of the valid attack paths that

can be generated using existing algorithms [1].

• ( f t p rhosts,0,2), (rsh,0,2), (local bo f ,2)
• ( f t p rhosts,0,1), (rsh,0,1), ( f t p rhosts,1,2), (rsh,1,2), (local bo f ,2)
• (sshd bo f ,0,2), ( f t p rhosts,1,2), (rsh,1,2), (local bo f ,2)

(ftp_2, 0)

(ftp_rhosts, 0, 2)

(ftp_1, 0)

(ftp_rhosts, 0, 1)

(user, 0)

(rsh, 0, 2)(rsh, 0, 1)

(sshd_bof, 0, 1)

(sshd_1, 0)

(trust_0, 1) (trust_0, 2)

(user, 1)

(ftp_rhosts, 1, 2) (local_bof, 1, 1)

(rsh, 1, 2)

(ftp_2, 1)

(trust_1, 2)

(ftp_1, 2)

(ftp_rhosts, 2, 1)

(user, 2)

(local_bof, 2, 2)

(sshd_bof, 2, 1)(rsh, 2, 1)

(sshd_1, 2)(trust_2, 1)

(root, 1)

(root, 2)

Fig. 2 An Example Attack Graph

Intuitively, to safeguard the goal condition, we want to break all the attack paths

leading to the goal. This intuition was captured by the concept of critical set, that

is, a set of exploits (and corresponding conditions) whose removal from the attack
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graph will invalidate all attack paths [38, 17]. It has also been shown that finding

critical sets with the minimum cardinality is NP-hard, whereas finding a minimal

critical set (that is, a critical set with no proper subset being a critical set) is polyno-

mial. Based on the above attack paths, there are many minimal critical sets, such

as {(rsh,0,2),(rsh,1,2)}, {( f t p rhosts,0,2)},(rsh,1,2)}, {( f t p rhosts,1,2),(rs

h,0,2)}, and so on. If any of those sets of exploits could be completely removed, all

the attack paths will become invalid, and hence the goal condition is safe.

Unfortunately, this solution based on critical set ignores an important fact. That

is, Not all exploits are under the direct control of administrators. An exploit can

only be removed by disabling its required conditions, but not all conditions can be

disabled at will. Intuitively, a consequence cannot be removed without removing its

causes. Some conditions are implied by other exploits. Such intermediate conditions

cannot be independently disabled without removing those exploits that imply them.

Only those initial conditions that are not implied by any exploit can be disabled

independently of other exploits or conditions. Hence, it is important to distinguish

between these two kinds of conditions. This is formally stated in Definition 0.2 and

illustrated in Example 0.3.

Definition 0.2. In an attack graph G(E ∪C,Rr ∪ Ri), initial conditions refer to

the subset of conditions Ci = {c | there does not exist e ∈ E such that (e,c) ∈ Ri},
whereas intermediate conditions refer to the complement C−Ci.

Example 0.3. In Figure 2, both rsh exploits require intermediate conditions, and

hence they cannot be disabled without first removing other exploits. The exploit

rsh(1,2) requires two conditions, (trust,2,1) and (user,1), which are both interme-

diate conditions and cannot be independently disabled. As long as an attacker can

satisfy those two conditions through other exploits (for example, ( f t p rhosts,1,2)
and (sshd bo f ,2,1)), they can always realize the exploit (rsh,1,2). In practice, al-

though one can stop the rsh service on host 2 to remove this exploit, this action

adversely reduces the availability of usable services to normal users. Hence, any of

the above minimal critical sets, such as {(rsh,0,2),(rsh,1,2)}, although theoreti-

cally a sound solution, is not practically enforceable.

4.2 A Graph-Based Algorithm for Hardening A Network

Section 4.1 motivates us to ask the following question: Which of the initial condi-

tions must be disabled, if the goal conditions are never to be satisfied? The answer

to this question comprises an enforceable solution, because initial conditions can

be independently disabled. To more formally state the above problem, it is conve-

nient to interpret an attack graph as a simple logic program as follows. Each exploit

or condition in the attack graph is interpreted as a logic variable. The interdepen-

dency between exploits and conditions now becomes logic propositions involving

the two connectives AND and OR, with AND between the conditions required by

each exploit and OR between the exploits implying each condition.
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All the variables in the logic program are Boolean. A true initial condition means

the condition is satisfied and a false one means it has been disabled by security

measures. A true exploit means it has been realized. A true intermediate condition

means it has been satisfied by at least one realized exploit implying that condition.

With this logic program, the network hardening problem is simply to find value

assignments to the initial conditions satisfying that a given set of goal conditions

are all false. The above description is more formally stated as Definition 0.3 and

illustrated in Example 0.4.

Definition 0.3. Given an attack graph G(E∪C,Rr∪Ri) and the goal conditions Cg⊆
C, let P(G) denote a logic program comprised of the following clause for each e∈E:

e← c1∧ c2∧ . . .cn

c1,c2, . . . ,cn ∈ Rr(e)

and the collection of clauses for each c ∈C:

c ← e1

c ← e2

. . .

c ← em

e1,e2, . . . ,em ∈ Ri(c)

The network hardening problem is to satisfy the goal ¬c1∧¬c2∧·· ·¬cl where

each c1,c2, . . . ,cl ∈Cg.

Example 0.4. For the attack graph G shown in Figure 2, the following are examples

of clauses in P(G)

f t p rhosts(0,1)← f t p(0,1)∧user(0)

rsh(0,1)← trust(1,0)∧user(0)

user(1)← rsh(0,1)∨ rsh(2,1)∨ sshd bo f (0,1)∨ sshd bo f (2,1)

root(2)← local bo f (2)

To harden the network, we ony need to find a value assignment to the initial

conditions such that the goal ¬root(2) is true.

By its very definition, the hardening problem can certainly be solved by logic

programming techniques. However, considering the simplicity of the logic program,

we shall instead resolve to a simpler solution based on graph searches. Roughly

speaking, we start from the goal conditions to traverse the attack graph backwards

by following the directed edges in the reverse direction. During the traversal we
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make logical inferences. At the end of the graph traversal, a logic proposition of the

initial conditions is derived to be the necessary and sufficient condition for making

the goal true.

Procedure Network Hardening

Input: An attack graph G(E ∪C,Rr ∪Ri) and the goal conditions Cg ⊆C

Output: A solution L to the goal
∧

c∈Cg
¬c

Method:

1. Let L =
∧

c∈Cg
¬c //The initial goal

2. For each e ∈ E and c ∈C

3. Let Pre(e) = {e} and Pre(c) = {c} //Initialize the predecessor list
4. Do a breadth-first search in G starting from Cg

5. For each encountered condition c //Each exploit e is handled similarly
6. Let Se = {e1,e2, . . . ,en} be the exploits pointing to c in G

7. Let T = (e1∨ e2∨ . . .en) //Temporary variable
8. For each ei ∈ Se∩Pre(c)
9. Replace ei with FALSE in T //Break a cycle
10. Replace c with T in L //Expand on the condition
11. For each ei ∈ Se−Pre(c)
12. Let Pre(ei) = Pre(ei)∪Pre(c) //Update the predecessor list
13. Return L

Fig. 3 A Procedure for Solving The Network Hardening Problem

Figure 3 shows a procedure Network Hardening that more precisely describes

this process. The first three lines of procedure Network Hardening initialize the

result L and a predecessor set for each vertex (an exploit or a condition) that used to

avoid cycles. The procedure then searches the attack graph backwards in a breadth-

first manner (strictly speaking, this is not a breadth-first search, since each vertex

may be visited more than once).

For each condition c the procedure encounters (each exploit is handled in a simi-

lar way, and hence is omitted.), it substitutes c in the result L with a logically equiv-

alent proposition, that is, the conjunction of those exploits that imply condition c

(line 6 through line 10). It adds the vertices reachable from the current vertex to the

predecessor set of that vertex (line 11-12). The procedure avoids running into cycles

by only expanding the search towards those vertices not reachable from the current

vertex (line 8-9) and thus avoids introducing logic loops into the final result.

Consider Figure 2 again. Because the procedure will only search among the ver-

tices from which the goal condition is reachable, we can safely remove from further

consideration the exploit local bo f (1) and the condition root(1), together with cor-

responding edges. The condition user(0), which denotes the attacker’s privilege on

his/her own machine, can also be removed because it is beyond the control of ad-

ministrators. The simplified version of the attack graph is shown in Figure 4.

The Procedure Network Hardening traverses this attack graph as follows (for

clarity purposes, we shall describe it in a depth-first manner and ignore the re-

sult collection for the time being). It starts from the goal condition (root,2) and
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(ftp_2, 0)

(ftp_rhosts, 0, 2)

(ftp_1, 0)

(ftp_rhosts, 0, 1)

(sshd_1, 0)

(sshd_bof, 0, 1)

(trust_0, 1)

(rsh, 0, 1)

(trust_0, 2)

(rsh, 0, 2)

(user, 1)

(ftp_rhosts, 1, 2)

(rsh, 1, 2)

(ftp_2, 1)

(trust_1, 2)

(ftp_1, 2)

(ftp_rhosts, 2, 1)

(user, 2)

(local_bof, 2, 2) (sshd_bof, 2, 1)

(rsh, 2, 1)

(sshd_1, 2)

(trust_2, 1)(root, 2)

Fig. 4 Illustration of The Procedure Network Hardening

advances to (user,2) through (local bo f ,2,2). It then branches and reaches both

(rsh,0,2) and (rsh,1,2). The advance of the branch at (rsh,0,2) is straightfor-

ward. For the branch at (rsh,1,2), it reaches (user,1) twice, one directly from

(rsh,1,2) and the other through (trust 1,2) and ( f t p rhosts,1,2). The advance

from (user,1) branches upwards to (rsh,0,1) and (sshd bo f ,0,1), and also down-

wards to (rsh,2,1) and (sshd bo f ,2,1). The advance of the first two branches is

straightforward. The two downward branches loop back to (user,2) and both ter-

minate there, because (user,2) is included by the predecessor set of (rsh,2,1),
( f t p rhosts,2,1), and (sshd bo f ,2,1)).

The result L is initially ¬(root,2) and is subsequently updated as in Figure 5.

Some straightforward steps are omitted for simplicity. The condition (user,1) actu-

ally appears twice in the proposition, one required by (rsh,1,2) in line 3 and the

other required by ( f t p rhosts,1,2). The second appearance should be included in

line 4 but we have omitted it for simplicity since (user,1)∧ (user,1) is logically

equivalent to (user,1). Notice, however, such simplification is not always possible

(for example, in the case of x∧y∨x∧ z, both copies of x must be kept), and it is not

part of the procedure. Indeed, the procedure differs from normal breadth-first search
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(BFS) because it may need to search through a vertex multiple times (for example,

x in the case of x∧ y∨ x∧ z) whereas a BFS visits each vertex exactly once.

1. L= ¬root(2)
2. = ¬(rsh(0,2)∨ rsh(1,2))
3. = ¬( f t p rhosts(0,2)∨ trust(2,1)∧user(1))
4. =¬( f t p(0,2)∨ f t p(1,2)∧ (rsh(0,1)∨ sshd bo f (0,1)∨ rsh(2,1)∨

sshd bo f (2,1)))
5. =¬( f t p(0,2)∨ f t p(1,2)∧ ( f t p(0,1)∨ sshd(0,1)∨ trust(1,2)∧FALSE∨

sshd(2,1)∧FALSE))
6. =¬( f t p(0,2)∨ f t p(1,2)∧ ( f t p(0,1)∨ sshd(0,1)∨ f t p(2,1)∧FALSE∧

FALSE ∨ sshd(2,1)∧FALSE))
7. = ¬( f t p(0,2)∨ f t p(1,2)∧ ( f t p(0,1)∨ sshd(0,1)))

Fig. 5 An Example of Result Updating in Network Hardening

In Figure 5, the FALSE values are results of the two cycles in the attack graph

(from user(1) to user(2), through sshd bo f (2,1) and through rsh(2,1), respec-

tively). For example, when the search leaves rsh(2,1) and reaches user(2), it finds

that user(2) is in the predecessor list of rsh(2,1). Hence, instead of replacing

rsh(2,1) with user(2)∧ trust(2,1), it replaces rsh(2,1) with trust(1,2)∧FALSE.

Similar argument explains the other FALSE values in line 5 and line 6. Although

we remove the effect of those FALSE values in line 7 to simplify the result, this is

not part of the procedure.

4.3 Minimum-Cost Solutions

The procedure Network Hardening returns the necessary and sufficient condition

for hardening the network such that none of the goal conditions can be satisfied.

However, such a proposition usually implies multiple options. It is not always clear

which option is the best. Therefore, we need to simplify the proposition and choose

optimal solutions with respect to given cost metrics. As the first step, we convert

the proposition L returned by the Procedure Network Hardening to its disjunctive

normal form (DNF). Each disjunction in the DNF thus represents a sufficient option

in hardening the network. Each disjunction in the DNS is the conjunction of negated

initial conditions, meaning these initial conditions must be disabled.

Example 0.5. In Figure 5, by applying the tautology A∨B∧C↔ (A∨B)∧ (A∨C)
and De Morgan’s law [20], we can simplify the result as follows.



An Approach to Defending Against Multi-Step Attacks 107

L = ¬( f t p(0,2)∨ f t p(1,2)∧ ( f t p(0,1)∨ sshd(0,1)))

≡ ¬(( f t p(0,2)∨ f t p(1,2))∧ ( f t p(0,2)∨ f t p(0,1)∨ sshd(0,1)))

≡ ¬ f t p(0,2)∧¬ f t p(1,2)∨¬ f t p(0,2)∧¬ f t p(0,1)∧¬sshd(0,1)

From this DNF, we can see clearly the two options in hardening the network: one

is to disable both f t p(0,2) and f t p(1,2), the other is to disable the three conditions

f t p(0,2), f t p(0,1), and sshd(0,1).

Although any of the disjunctions in the DNF of the result is a sufficient option

for hardening the network, the cost of those options may be different. First, the set

of initial conditions involved in one option may be a proper super set of those in-

volved in another option. The cost incurred by the latter is clearly no greater than

that by the former, and hence the former can be removed from further considera-

tion. Theoretically, the DNF of L may have an exponential size in the number of

initial conditions (after the above reduction, this number of options will be bound

by the number of incomparable subsets of n initial conditions, which is known as

the binomial coefficient
(

n
⌊n/2⌋

)

by Sperner’s Theorem).

We are now left with options involving mutually incomparable subsets of initial

conditions. The options that incur the minimum cost can be easily chosen, if the

cost of disabling each initial condition has been assigned by administrators. In such

a case, the cost of an option is simply equal to the summation of the cost of all the

initial conditions involved by the option. Although it is usually difficult to assign

precise cost to each condition, the conditions can always be partially ordered based

on their costs. Consequently, the options can also be partially ordered based on the

cost of conditions. An option with a cost no greater than any other options can thus

be chosen based on the partial order.

Example 0.6. Consider the two options we have derived from the last example, that

is either to disable both f t p(0,2) and f t p(1,2), or to disable the three conditions

f t p(0,2), f t p(0,1), and sshd(0,1). The condition f t p(0,2) must be disabled in

either case, and hence it can be ignored in considering relative costs. Since the con-

dition sshd(0,1) can be disabled by patching the buffer overflow vulnerability in

the sshd service, the cost may be relatively low. On the other hand, the conditions

involving the ftp service incurs more costs, because the ftp service is properly func-

tioning, and is simply used by the attacker in a clever way. Moreover, disabling

f t p(0,2) may mean stopping the ftp service on host 2 to all external hosts, which

may incur a higher cost than stopping the ftp service between two internal hosts 1

and 2 (they may still communicate files via other services). Based on those assump-

tions, the first option has a lower cost than that of the second and thus should be

chosen as the solution.
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5 Correlating and Predicting Multi-Step Attacks

The previous section shows that multi-step attacks can be avoided, if we can harden

the network by removing vulnerabilities and reconfiguring the network. However,

network hardening is not always feasible due to its incurred costs. Hence, this sec-

tion discusses another option in defending a multi-step intrusion, that is to monitor

and predict its progress in real time, and to take appropriate actions accordingly.

First, Section 5.1 gives the motivation. Section 5.2 then describes our queue graph-

based approach to alert correlation. Section 5.3 extends the approach to hypothesize

and predict alerts. Finally, Section 5.4 discusses how to compress the result of these

analyses.

5.1 Motivation

Roughly speaking, when an alert correlation engine receives a new alert, it searches

through the received alerts to find those that prepare for the new alert. In vulnerability-

centric alert correlation, alerts inherit the prepare-for relationship from the exploits

that these alerts are mapped to. The prepare-for relationship is repetitively evalu-

ated between a new alert and each received alert; this process is repeated for each

new alert. Apparently, this procedure involves two nested loops, and is thus usually

called the nested loop approach.

Figure 6 illustrates the nested loop approach. The left side of the figure shows a

sequence of alerts with ascending timestamps, a0,a1, . . . ,an. For i = 1,2, . . . ,n, the

approach searches a0,a1, . . . ,ai−1 for those a j’s that satisfy Exp(a j)→ Exp(ai).
However, this does not imply that ai must be compared to every a j(0 ≤ j ≤ i−1),
although it comprises a simple implementation of the search. The search for the

alerts that prepare for ai can be optimized with an index on a0,a1, . . . ,ai−1. After ai

is processed, an entry corresponding to ai is inserted into the index. By maintain-

ing such an index in memory, the nested loop approach can have a relatively good

performance (for example, 65k alerts can be processed in less than one second [22]).

 

time 

a1 ai-k ai …  …  an a0 …  ai-1 

search 

time 

a1 ai …  an a0 …  ai-1 

search 

k

Fig. 6 The Nested Loop Approach With or Without a Sliding Window

Clearly, any finite amount of available memory will eventually be insufficient to

hold the index as the number of received alerts keeps increasing. A sliding window

approach comes to the rescue. That is, only the alerts close enough to the new alert
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are considered for correlation. As illustrated in the right side of Figure 6, for the alert

ai the search is only performed on ai−k,ai−k+1, . . . ,ai−1, where k is a given window

size determined by available memory. However, this sliding window approach leads

to an unavoidable tradeoff between the performance and the completeness of corre-

lation. On one hand, the performance requires k to be small enough so the index fits

in memory. On the other hand, a smaller k means less alerts will be considered for

correlation with the new alert, and thus the result may be incomplete as two related

alerts may in fact be separated by more than k others.

In contrast to off-line applications, such as computer forensics, the situation is

exacerbated in real-time correlation, where performance is critical and attackers are

alive. Attackers may be aware of the ongoing detection and correlation effort, and

they can employ a slow attack to defeat such efforts. Specifically, given an arbitrarily

large window size k, for any two attacks that trigger the correlated alerts ai and a j,

the attacker can delay the second attack until at least k other alerts have been raised

since ai, so j− i > k meaning ai and a j will not be correlated. Instead of passively

awaiting, a smarter attacker can actively launch bogus attacks between the two real

attack steps, so the condition j− i > k can be satisfied in a shorter time. The attacker

can even script bogus attack sequences between the real attack steps, such that a

deceived correlation engine will be kept busy in producing bogus attack scenarios,

while the real intrusion will be advanced in peace of mind.

5.2 Queue Graph-Based Alert Correlation

Section 5.1 motivates us to propose a Queue Graph (QG) data structure to remove

the limitation of the nested loop approach. The key observation is that the corre-

lation between alerts does not always need to be explicitly recorded. Note that the

correlation between two alerts actually mean two things. First, the prepare-for rela-

tionship exists between the exploits to which the two alerts are mapped. Second, the

alert preparing for the other must occur before it. Knowing these facts, a new alert

only needs to be explicitly correlated with the last alert matching each exploit. Its

correlation with other earlier alerts matching the same exploit can be kept implicit

through the temporal order and with the matching between alerts and exploits. This

is illustrated in Example 0.7.

Example 0.7. In Figure 7, suppose the first three alerts ai, a j, and ak all match the

same exploit Exp(ak) (that is, their event types match the same vulnerability and

they involve the same source and destination hosts). The alert ah matches another

exploit Exp(ah), and Exp(ak) prepares for Exp(ah). Hence, ai, a j, and ak should

all be correlated with ah. However, if the correlation between ak and ah is explicitly

recorded (shown as a solid line in the figure), then the correlation between a j and ah

can be kept implicit (shown as a dotted-line). More precisely, the facts Exp(a j) =
Exp(ak) and Exp(ak)→ Exp(ah) jointly imply Exp(a j)→ Exp(ah), and the facts

that a j occurs before ak and ak occurs before ah jointly imply that a j must also occur

before ah. Similar arguments apply to the correlation between ai and ah.
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ai aj ak …  …  …  ah …  …  

Exp(ai) = Exp(aj) = Exp(ak)  
Exp(ak) → Exp(ah) 

Fig. 7 Implicit and Explicit Correlation

This observation is important because keeping correlations implicit can signifi-

cantly reduce the complexity and memory requirement. Intuitively, for each exploit

the correlation algorithm only needs to search backward for the first (ak in the above

case) alert matching that exploit. For the nested loop approach, however, the cor-

relation is always explicit. Hence, the approach must unnecessarily search all the

received alerts, as discussed in Section 5.1. To take advantage of the above observa-

tion, we design an in-memory data structure, called Queue Graph. A queue graph

is basically an in-memory materialization of the given attack graph with enhanced

features (the purpose of the features will be clear in the following sections).

In a queue graph, each exploit is realized as a queue and each condition as a

variable. The realization of edges is a little more complicated. Starting from each

exploit ei, a breadth-first search (BFS) is performed in the attack graph by following

the directed edges. For each edge encountered during the search, a forward pointer

is created to connect the corresponding queue and variable. Similarly, another search

is performed by following the directed edges in their reversed direction, and a back-

ward pointer is created for each encountered edge. Later we shall use the backward

edges for correlation purposes and use the forward edges for prediction purposes.

The pointers are then placed at a separate layer tailored to the queue correspond-

ing to the exploit ei. The reason for separating pointers into layers is as follows. A

BFS always creates a tree (namely, the BFS tree), and hence later another BFS start-

ing from the same queue can follow only the pointers at that layer. This later BFS

will then be performed within a tree instead of a graph, reducing the complexity

from quadratic to linear. We first illustrate the concepts in Example 0.8, and then

formalize the concepts in Definition 0.4. Example 0.9 rephrase Example 0.8 with

the defined notations.

Example 0.8. In Figure 8, from left to right are a given attack graph, the correspond-

ing queues (shown as buckets) and variables (shown as texts), and the (both forward

and backward) pointers at different layers. Notice that the layer one pointers do not

include those connecting v2 and Q3, because a BFS in the attack graph starting from

e1 will reach c2 only once (either via e2 or via e3, but we assume e2 in this example).

The layer one pointers thus form a tree rooted at Q1.

Definition 0.4. Let G(E∪C,Rr∪Ri) be an attack graph, where E = {ei | 1≤ i≤ n},
C = {ci | 1≤ i≤ m}, Rr ⊆C×E, and Ri ⊆ E×C.

• For k = 1,2, . . . ,n,
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Fig. 8 An Example Queue Graph

– use BFSR(k) to denote the set of edges visited by a breadth-first search in

G(E ∪C,Rr ∪Ri) starting from ek, and

– use BFS(k) for the set of edges visited by a breadth-first search in G(E ∪
C,R−1

r ∪R−1
i ) staring from ek, where R−1

r and R−1
i are the inverse relations.

• The queue graph Qg is a data structure with the following components:

– Q = {Qi | 1≤ i≤ n} are n queues of length one,

– V = {vi | 1≤ i≤ m} are m variables,

– for each k = 1,2, . . . ,n,

· Pk = {〈Q j,vi〉 | (ci,e j) ∈ BFS(k)}∪{〈vi,Q j〉 | (e j,ci) ∈ BFS(k)} are

the layer k backward pointers, and

· PRk = {〈vi,Q j〉 | (ci,e j)∈BFSR(k)}∪{〈Q j,vi〉 | (e j,ci)∈BFSR(k)}
are the layer k forward pointers.

Example 0.9. In Figure 8, the queue graph has three queues Q = {Q1,Q2,Q3} and

two variables V = {v1,v2}. The layer-one forward pointers are PR1 = φ , and the

layer-one backward pointers are P1 = {〈Q1,v1〉,〈v1,Q2〉,〈Q2,v2〉,〈v1,Q3〉}
1. The

layer two pointers include P2 = {〈Q2,v2〉} and PR2 = {〈Q2,v1〉,〈v1,Q1〉}. The

layer three pointers include P3 = {〈Q3,v2〉} and PR3 = {〈Q3,v1〉,〈v1,Q1〉}.

We have discussed how a nested loop approach correlates alerts. As a compar-

ison, we now perform the same correlation using a queue graph (we shall discuss

other correlation requirements in Section 5.3). Intuitively, we let the stream of alerts

flow through the queue graph, and at the same time we collect correlation results by

searching the queue graph. Specifically, each incoming alert is first matched with

an exploit and placed in the corresponding queue. Then, because the length of each

queue is one, a non-empty queue must dequeue the current alert before it can en-

queue a new alert.

The results of correlation are collected during this process as a directed graph,

namely, the result graph. First, each new alert is recorded as a vertex in the result

graph. Second, when a new alert forces an old alert to be dequeued, a directed edge

between the two alerts is added into the result graph, which records the temporal

1 We use the notation 〈a,b〉 for a pointer in a queue graph and (a,b) for an edge in a graph.
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order between the two alerts and the fact that they both match the same exploit.

Third, after each new alert is enqueued, a search starts from the queue and follows

two consecutive backward pointers; for each non-empty queue encountered during

the search, a directed edge from the alert in that queue to the new alert is added into

the result graph. This is illustrated in Example 0.10.

Example 0.10. Consider correlating the four alerts ai, a j, ak, and ah in Figure 7 with

the queue graph given in Figure 8, and suppose Exp(ah) = e1, Exp(ak) = e2, and no

other alerts match e1 or e2 besides ai, a j, ak, and ah. First, when ai arrives, it is placed

in the empty queue Q2. Then, a j forces ai to be dequeued from Q2, and a directed

edge (ai,a j) in the result graph records the facts that ai is before a j and they both

match e2. Similarly, ak replaces a j in Q2, and a directed edge (a j,ak) is recorded.

Finally, ah arrives and occupies Q1, a search starting from Q1 and following two

layer one backward pointers will find the alert ak in Q2. Hence, a directed edge

(ak,ah) records the only explicit correlation.

The process for correlating alerts using a queue graph, as illustrated in Exam-

ple 0.10, is more precisely stated as the procedure QG Alert Correlation in Fig-

ure 9. The result graph Gr has a set of vertices V and two separate sets of edges

Er and El . The edges in Er correspond to the explicit correlations and those in El

record the temporal order between alerts matching the same exploit. Initially, we set

the queues in Q, the sets V , Er, and El as empty. The first step of the procedure

inserts the new alert into the result graph. The second step dequeues a non-empty

queue and updates the result graph by adding an edge between the old alert and the

new alert. The third step enqueues the new alert into the queue graph. The fourth

step does correlation by searching for the alerts that need to be explicitly correlated

to the new alert.

Procedure QG Alert Correlation

Input: A queue graph Qg with n queues and m variables, the initial result graph
Gr(V,Er ∪El), and an alert anew satisfying Exp(anew) = ei (1≤ i≤ n)

Output: The updated result graph Gr(V,Er ∪El)
Method:

1. Insert anew into V

2. If Qi contains an alert aold

Insert edge (aold ,anew) into El

Dequeue aold from Qi

3. Enqueue anew into Qi

4. For each Q j(1≤ j ≤ n) satisfying 〈Qi,vk〉 ∈Pi∧〈vk,Q j〉 ∈Pi (1≤ k ≤ m)
If Q j contains an alert a j

Insert (a j,anew) into Er

5. Return Gr(V,Er ∪El)

Fig. 9 A Procedure for Correlating Alerts Using Queue Graphs

The procedure QG Alert Correlation is sufficient for demonstrating the advan-

tages of the QG approach, although some of the features of the queue graph, such
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as the variables and the forward pointers, are not yet used and will be needed in

the next section. First, the time for processing each new alert with the QG approach

is linear in (m + n), that is the number of vertices in the attack graph. In Proce-

dure QG Alert Correlation, the fourth step visits at most (m + n) edges, because it

searches in a tree (that is, the BFS tree rooted at Qi) by following the layered point-

ers in Pi; the other steps of the procedure take almost constant time. Hence, the

performance of the QG approach is independent of the number of received alerts,

as n and m are relatively stable for a given network. In contrast, the nested loop

approach (without using a sliding window) searches all alerts, and hence the perfor-

mance keeps decreasing as more and more alerts are received.

Second, the memory usage of the QG approach is roughly O(n(n + m)) due to

n layers of maximally (n + m) pointers (the correlation only appends to the result

graph but does not read from it, and hence the result graph needs not to reside in

memory), which does not depend on the number of received alerts, either. In com-

parison, the nested loop approach without a sliding window needs memory for in-

dexing on all the received alerts. Third, the QG approach is not vulnerable to slowed

attacks, which can easily defeat the nested loop approach using a sliding window as

described earlier. In the procedure QG Alert Correlation, an alert is no longer con-

sidered for correlation only if a new alert matching the same exploit arrives. Hence,

if one alert prepares for another, then no matter how many unrelated alerts are in-

jected, the earlier alert will always sit in the queue graph waiting for the second

alert.

When an alert is dequeued from the queue graph, it will no longer be needed

for correlation. This critically depends on the assumption that alerts arrive in the

correct order. However, both the order suggested by timestamps and the actual order

of arrivals can be wrong, since the temporal characteristics of alerts are typically

imprecise. Instead, we adopt the following conservative approach. First, any two

alerts whose timestamps have a difference no greater than a given threshold tcon

are treated as concurrent; the correct order of concurrent alerts is always the one

that allows the alerts to be correlated. Second, for non-concurrent alerts, the correct

order is the one suggested by their timestamps, but alerts are allowed to arrive in a

different (and incorrect) order.

This conservative approach enable us to tolerate varying delays in a network and

small differences between the clocks of sensors (as discussed earlier, we assume

the clocks of sensors are loosely synchronized). However, the basic QG approach

does not work properly on alerts arriving in incorrect order. Consider an alert a1

that prepares for another alert a2 but arrives later then a2. As described before, the

procedure QG Alert Correlation will only look for those alerts that prepare for a1,

but not those that a1 prepares for (a2 in this case). Moreover, if another concurrent

alert a′2 matches the same exploit as a2 does and arrives after a2 but before a1. Then,

a2 is already dequeued by the time a1 arrives, and hence the correlation between a1

and a2 will not be discovered.

To prevent alerts from arriving the correlation engine in an incorrect order, we re-

order them inside a time window before feeding them into the queue graph. Specif-

ically, assume the varying delay is bound by a threshold tmax. We postpone the pro-
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cessing of an alert a1 with a timestamp t1 until tmax (the larger one between tmax

and tcon, when concurrent alerts are also considered) time has passed since the time

we receive a1. We reorder the postponed alerts, so they arrive at the correlation en-

gine in the correct order. Then after tmax time, any alert a2 will have a timestamp t2
satisfying t2 > t1. The worst case is when a1 is not delayed but a2 is delayed tmax

time, and the fact a2 is received tmax later than a1 indicates t2 + tmax− tmax > t1,

and hence t2 > t1. The above assumption about bound varying delays can be re-

laxed with a bound on the difference between the delay of any two alerts with tmax,

while allowing the delay itself to be arbitrarily large (the worst case then becomes

t2 + tx + tmax > t1 + tx + tmax, where tx is an arbitrary delay).

Notice here a time window is used for reordering alerts, and no alert will be ex-

cluded from correlation. Unlike the time window used by the nested loop approach,

this time window does not make the correlation vulnerable to slow attacks. The ca-

pability of dealing with concurrent alerts and varying delays comes at a cost. The

additional delay introduced for reordering alerts causes an undesired decrease in

the timelineness of alert correlation. However, if we choose to report results im-

mediately as each alert arrives, then the imprecise temporal characteristics of alerts

may cause incorrect and confusing results. Such results may diminish the value of

the correlation effort. This reflects the inherent tradeoff between the capability of

containing unavoidable uncertainties and the performance of processing alerts.

5.3 Hypothesizing Missing Alerts and Predicting Future Alerts

The queue graph approach introduced in previous section provides unique oppor-

tunities to hypothesize alerts missed by IDSs and to predict possible consequences

of current attacks. Intuitively, missing alerts will cause inconsistency between the

knowledge encoded in attack graphs and the facts represented by received alerts. By

reasoning about such inconsistency, missing alerts can be plausibly hypothesized.

On the other hand, by extending the facts in a consistent way with respect to the

knowledge, possible consequences of an intrusion can be predicted. To elaborate on

those ideas, we first define consistent sequences of alerts in Definition 0.5 and then

illustrate the concept in an example.

Definition 0.5. We say an exploit is ready to be executed if all of its required in-

termediate conditions are satisfied by previous executions of exploits. We say a se-

quence of alerts is consistent, if every alert in the sequence matches an exploit ready

to be executed by the time the alert is received.

Example 0.11. The sequence of alerts shown on the left hand side of Figure 10(that

is, a0,a3) is inconsistent with respect to the attack graph, because the condition c3

is not satisfied before the exploit e3 is executed (as indicated by the alert a3). On

the other hand, the sequence a0,a1,a3 is consistent, because executing the exploit

e1 (as indicated by the alert a1) satisfies the only condition c3 that is required by

the execution of e3 (as indicated by a3). The sequence shown on the right hand
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side of Figure 10 is inconsistent, because the condition c4 is not satisfied before the

execution of e3.
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Fig. 10 Examples of Consistent and Inconsistent Alert Sequences

In the previous section, our correlation algorithm searches for alerts that prepare

for the new alert by following two consecutive pointers. Such an approach only

works for consistent alert sequences. For inconsistent sequences, such as those in

Example 0.11, the search will stop at empty queues that correspond to missing alerts

and the correlation result will be incomplete. A natural question is, Can we continue

to search and hypothesize missing alerts if necessary? The question motivates us to

extend the correlation method to hypothesize missing alerts. Intuitively, we want to

explain the occurrence of a new alert by including it in a consistent sequence of

alerts (by alert correlation) and missing alerts (by alert hypothesis).

Specifically, a search starts from the queue containing the new alert, and hypothe-

sizes about missing alerts for encountered empty queues. It stops at each non-empty

queue because it knows that the alert in that queue must have already been pro-

cessed previously. The search expands its frontier in a breadth-first manner after

each hypothesis is made, since the hypothesis itself may also need an explanation.

Such attempts continue until a satisfactory explanation for the new alert and all the

hypothesized ones has been obtained. The explanations of all received alerts collec-

tively form the result graph, which is now composed of alerts, hypothesized alerts,

and conditions that are either satisfied or hypothetically satisfied. This is illustrated

in Example 0.12.

Example 0.12. Consider again the three cases, from left to right, in Figure 10 when

the alert a3 is received. For the first case, two missing alerts matching e1 and e2

need to be hypothesized and then a3 can be correlated to a0 (through one of the

hypothesized alerts). For the second case, no alert needs to be hypothesized because

the sequence is already consistent, and a3 needs to be correlated to a1. For the third

case, a0 needs to be correlated to a1, and it also needs to be correlated to a0 through

a hypothesized alert matching e2.

The correlation procedure described in Section 5.2 can be modified by replacing

the step 4 with a new sub-procedure that correlates and hypothesizes alerts as fol-
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lows. Given a queue graph Qg with n queues Q and m variables V . Each variable

in V can now have one of the three values TRUE, FALSE, and HYP, together with

a timestamp; those denote a satisfied condition, an unsatisfied one, a hypothetically

satisfied one, and the time of the last update, respectively. Each queue in Q can con-

tain alerts or hypothesized alerts. The result graph Gr(V,El ∪Er) is similar to that

described in last section. However, the vertex set V now includes not only alerts but

also hypothesized alerts and conditions.

Now suppose a new alert anew with timestamp tnew is received and placed in the

queue Qi(1 ≤ i ≤ n). First, we start from Qi and follow the pointers in PRi to set

each variable v j(1≤ j ≤m) adjacent to Qi with the value TRUE and the timestamp

tnew. This step records the conditions satisfied by anew. Second, we start from Qi and

make a partial BFS by following the pointers in Pi. The BFS is partial, because

it stops upon leaving (given that a BFS is implemented through manipulating a

separate queue as usual, we shall refer to the enqueues as reaching and the dequeues

as leaving to avoid confusions) a variable with the value TRUE or the value HYP or

a queue that contains a hypothesized alert. This step correlates anew to previously

received or hypothesized alerts.

The result graph Gr is updated during the above process as follows. First, after

we enqueue anew into Qi and make changes to each v j adjacent to Qi, we add anew

and v j (that is, the value and timestamp of v j) as vertices, and an edge from anew

pointing to v j into the result graph Gr. This step records the fact that the new alert

anew satisfies its implied conditions at time tnew. Second, during the partial BFS, we

record each hypothesis. Whenever we change the value of a variable v j from FALSE

to HYP, we record this update in Gr; similarly, whenever we enqueue a hypothesized

alert into an empty queue, we record this hypothesized alert in Gr. Third, whenever

we leave a variable v and reach a queue Q, we insert into Gr a directed edge from

each queue Q to v; similarly, we insert edges from a queue to its connected variables

when we leave the queue. Example 0.13 illustrates the above procedure.

Example 0.13. Consider the left-most case of Figure 10. The first alert a0 will only

cause the condition c2 to be changed from FALSE to TRUE. The result graph will

be updated with the alert a0 and the satisfied condition c2 and the directed edge

connecting them. When a3 is received, a search starts from (the queue corresponding

to) e3; it changes c3 from FALSE to HYP; it inserts a hypothesized alert a1 into e1 and

a2 into e2, respectively; it stops at c1 (which is initially set as TRUE) and c2 (which

has been set as TRUE when a0 arrived). The result graph will be updated with the

alert a3, the hypothesized alerts a1 and a2, the hypothetically satisfied condition c3,

and the directed edges between them.

At first glance, the above procedure takes quadratic time, because a BFS takes

time linear in the number of vertices (n + m) and edges (n + m)2, where n and m

is the number of exploits and security conditions in the attack graph, respectively.

However, this is not the case. As described in the last section, a queue graph orga-

nizes its pointers in separate layers, and each layer is a BFS tree rooted at a queue.

Hence, a BFS that starts from a queue and follows the pointers in the corresponding

layer will be equivalent to a tree traversal, which takes linear time (n + m). This



An Approach to Defending Against Multi-Step Attacks 117

performance gain seems to be obtained at the price of more memory requirement,

because a pointer may appear in more than one layer. However, the memory require-

ment is quadratic (that is, O(n(n+m))), which is indeed asymptotically the same as

that of the original attack graph.

In the above discussions, we explain the occurrence of a new alert by search-

ing backwards (that is, in the reversed direction of the edges in attack graphs) for

correlated (or hypothesized) alerts. Conversely, we can also predict possible con-

sequences of each new alert by searching forwards. A BFS is also preferred in this

case, because the predicted conditions will be discovered in the order of their (short-

est) distances to the new alert. This distance roughly indicates how imminent a pre-

dicted attack is, based on the alerts received so far (although not pursued in this

chapter, probability-based prediction techniques, such as [31], can be easily incor-

porated based on the QG data structure to more precisely measure how imminent

each attack is).

The procedure of prediction is similar to that of correlation and hypothesis dis-

cussed in the previous section. The main differences between the two procedures

are as follows. After the correlation and hypothesis completes, the prediction starts.

It begins at the conditions satisfied by the new alert and makes a partial BFS in the

queue graph by following the pointers in PR i (suppose the new alert is enqueued

by Qi). The search stops at previously received (or hypothesized) alerts and their

(hypothetically) satisfied conditions to avoid repeating the previous prediction.

The result of the prediction process is a sequence of non-empty sets Con1, Con2,

. . ., with Coni(1 ≤ i ≤ m) containing the conditions that can possibly be satisfied

in i steps from now. Unlike in correlation and hypothesis, the prediction process

does not reason about the disjunctive and conjunctive relationship between exploits.

Instead, a condition c will appear in the set Coni as long as there exists a path of

length 2i (the path consists of both security conditions and exploits) from c to some

previously satisfied condition. Hence, the number i provides a lower bound to the

number of exploits that must be executed before c can be satisfied.

5.4 Compressing Result Graphs

This section studies how to compress result graph without losing any information.

In previous sections, avoiding unnecessary searches enables the QG approach to

have a performance independent of the number of received alerts. As a side-effect,

this also reduces the size of result graphs by having less transitive edges. However,

the QG approach does not completely remove transitive edges from result graphs,

as illustrated in Example 0.14. In practice, brute force attempts of the same attack

with different parameters usually lead to a large number of alerts in a short time

(the treasure hunt data used in Section 5.5 is a good example for such brute force

attempts). In Example 0.14, if the bi’s happen to be such an attack, then a large

number of transitive edges will make the result graph less perceptible. It is thus

desired to remove such transitive edges.
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Example 0.14. The left side of Figure 11 shows the result graph of correlating a se-

ries of alerts using the QG approach. Transitive edges such as (a1,b1) and (a2,b1)
are not present, since the QG approach immediately stops after it reaches a3. How-

ever, the edges (a3,b2) and (a3,b3) are both transitive edges. When b2 and b3 arrive,

the QG approach repeats the same search as it does for b1 and thus the two transitive

edges are inserted into the result graph. Similarly, the edge (c,a3) is also transitive.
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Fig. 11 An Example of Compressing Result Graphs

The transitive edges also cause redundant information in alerts. Following the

above example, b1, b2, and b3 are indistinguishable in terms of alert correlation.

That is, any other alert prepares for (or be prepared for by) either all or none of them.

The three alerts can thus be aggregated as a single vertex in the result graph, with the

edge connecting these alerts deleted. Similarly, a2 and a3 are also indistinguishable.

On the other hand, a1, a2, a3 are not indistinguishable, because c prepares for a2 and

a3 but not a1. The right side of Figure 11 shows a more compact version of result

graph, with transitive edges deleted and indistinguishable alerts aggregated.

Existing alert correlation approaches usually take extra efforts in making the re-

sult graph more compact, such as aggregating alerts before correlating them [21].

The additional step increases the performance overhead of alert correlation. We

show that our QG approach can be modified to directly produce a compact result

graph. We also show that the modified QG approach may actually be more efficient.

We first modify the QG approach to avoid inserting transitive edges into the result

graph. For this purpose, we let each backward pointer in a queue graph to have one

of the two states, on and off.

Initially, all the backward pointers are on. The backward pointers are then

switched between the two states as follows. Whenever a directed edge (ai,a j) is

inserted into Er, we turn off the backward edges between the corresponding queues

Qi and Q j. Whenever an alert is enqueued in a queue Qi, all the backward pointers

arriving at Qi will be turned on. Finally, when we search for older alerts that prepare

for a new alert, we follow a backward edge only if it is currently turned on. This

process is illustrated in Example 0.15.

Example 0.15. In the left side of Figure 11 suppose the alerts ai, bi, c correspond

to the queues Qa, Qb, and Qc, respectively. When the alert b1 arrives, it searches
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through the backward pointers from Qb to Qa and inserts an edge (a3,b1) into Er.

Then according to the above discussion, the backward pointers from Qb to Qa will

be turned off. Consequently, the alerts b2 and b3 will not follow those pointers, and

the transitive edges (a3,b2) and (a3,b3) are avoided. This remains true until the alert

a4 arrives, which turns on all the backward pointers arriving at the queue Qa. Then

later when b4 arrives, it follows the backward pointers from Qb to Qa and inserts the

edge (a4,b4).

Alerts are aggregated during the above process as follows. Suppose an alert ai

arrives and the corresponding queue Qi already contains another alert a′i. Then ai is

aggregated with a′i if the following two conditions are true. First, all the backward

pointers arriving at Qi are on. Second, all the backward pointers leaving Qi are off.

The first condition ensures that a′i does not prepare for any other alerts that arrive

between a′i and ai, because otherwise ai and a′i would not be indistinguishable. The

second condition ensures that a′i and ai are prepared for by the same collection

of alerts, so they are indistinguishable with respect to those alerts. This process is

illustrated in Example 0.16.

Example 0.16. Following the above example, a3 is aggregated with a2 because the

backward pointers from Qb to Qa are on and those from Qa to Qc have been turned

off by the alert a2. Similarly, b2 and b3 are aggregated with b1, because the backward

pointers from Qb to Qa have been turned off by b1. On the other hand, the alert b4

will not be aggregated, because the backward pointers from Qb to Qa must have

been turned on by a4 by the time b4 arrives.

This new procedure not only produces a more compact result graph, but is also

more efficient than the original one in most cases. This is because unnecessary

searches corresponding to transitive edges are avoided. In Figure 11, the alerts a3,

b2, and b3 will not lead to a search in the modified approach because the backward

pointers have been turned off by earlier alerts. The performance gain can be signif-

icant in the case of brute force attempts where a large number of searches can be

avoided.

5.5 Empirical Results

This section presents implementation and empirical results. The correlation engine

is implemented in C++ and tested on a Pentium III 860MHz server with 1G RAM

running RedHat Linux. We use Snort-2.3.0 [37] to generate isolated alerts, which

are directly pipelined into the correlation engine for analyses. We use Tcpreplay

2.3.2 [43] to replay network traffic from a separate machine to the server running

the correlation engine.

Two data sets are used for experiments, the Darpa 2000 intrusion detection LL-

DOS 1.0 by MIT Lincoln Labs [8], and the treasure hunt dataset by the University

of California, Santa Barbara [42]. The attack scenario in the Darpa 2000 dataset
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has been extensively explored before (such as in [21]). Our experiments with the

dataset show similar results, validating the correctness of our correlation algorithm.

The treasure hunt dataset generates a large amount of alerts (about two million alerts

taking about 1.4G of disk space, with most of them being brute force attempts of the

same attacks), which may render a nested loop-based correlation method infeasible

(we found that even running a simple database query over the data will paralyze the

system). In contrast, our correlation engine processes alerts with negligible delays

(Snort turns out to be the bottleneck).

5.6 Effectiveness

The objective of the first set of experiments is to demonstrate the effectiveness of

the proposed algorithms in alert correlation, hypothesis, and prediction. We use the

Darpa 2000 dataset for this purpose. The reason we use this dataset is that it has

well known attack scenarios, which can be referenced in the included description or

previous work, such as [21]. For correlation without hypothesis and prediction, we

expect our method to produce exactly the same result as previous work do, with the

redundant transitive edges removed in the result graph (given that the domain knowl-

edge encoded in our attack graph exactly matches that used by previous work). No-

tice that the key contribution of this work is to improve the performance of previous

approach and make them immune to slowed attacks. The correlation methodology

itself is not different from that found in previous work, and similarly the accuracy

of the correlation result also depends on the domain knowledge used for correlation.

However, in contrast to the static result graph in previous work, our result evolves in

time with the continuously arriving alerts, as illustrated in Figure 12 (due to space

limitations, only two partial snapshots of the result graphs are shown). Such a result

can more clearly reveal the actual progress of an intrusion.

Figure 13 shows two results on hypothesizing missing alerts during the corre-

lation. On the left-side of the figure, two consecutive missing alerts (ICMP PING

and ICMP Echo Reply) and the corresponding conditions are hypothesized (shown

as shaded) when an alert (RPC portmap sadmind request UDP) is received but its

required condition (Host 10 Alive) has not been satisfied. The right-hand side of the

figure shows a conjunctive relationship between alerts, that is a DDoS mstream traf-

fic between two hosts requires the mstream software to be installed on both hosts.

We deliberately deleted the RSERVICES rsh alert on one of the host, which is suc-

cessfully hypothesized (shown as shaded).

Figure 14 and Figure 15 shows the result of alert prediction. In the first figure,

some conditions are predicted to be satisfied by possible upcoming alerts. The pre-

dicted conditions are shown as shaded, and the numbers are placeholders for alerts.

The second figure shows a later snapshot of the result graph, in which some of the

predicted conditions are indeed realized. Notice that here the attack graph exactly

(and only) captures the necessary domain knowledge, and hence the prediction re-

sult is highly accurate. In practice, both false positives (predicted but not realized)
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Time 

Fig. 12 The Evolving Result Graphs of Alert Correlation

and false negatives (realized but not predicted) may be introduced because of incom-

plete or inaccurate domain knowledge. Refining our prediction method to reduce

such inaccuracy comprises an interesting future direction.
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Fig. 13 The Hypothesis of Missing Alerts During Correlation

5.7 Performance

The objective of the second set of experiments is to evaluate the performance of the

correlation engine. The performance metric includes the resource usage (CPU and

memory) and the processing time of each alert. The correlation engine measures

its own processing time and compares the processing time to the delay between

receiving two consecutive alerts from Snort. All the results have 95% confidence

intervals within about 5% of the reported values. Figure 16 shows the CPU usage

(on the left-hand side) and memory usage (on the right-hand side) over time for the

Darpa data set. The correlation engine clearly demands less resources than Snort

(on average, the correlation engine’s CPU usage and memory usage are both under

10% of Snort’s).

The left chart in Figure 17 shows the processing time per alert (averaged per

22 alerts). Clearly, the correlation engine works faster than Snort in processing the

entire data set. The result also proves that the performance does not decrease over

time. Indeed, the processing time per alert remains fairly steady. We examine the

scalability of the correlation engine in terms of the number of exploits and condi-

tions. The treasure hunt data set is used for this purpose. The original attack graph

only has about one hundred exploits. We increase the size of attack graphs by ran-

domly inserting dummy exploits and conditions. The inserted exploits increase the

complexity of correlation because the correlation engine must search through them.
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The right chart in Figure 17 shows that the average processing time scales with the

size of attack graphs as expected.

We replay network traffic at relatively high speed (for example, the Darpa data

set is replayed in about 26 seconds while the actual duration of the dataset is several

hours). Real-world attacks are usually less intensive, and consequently our corre-

lation engine will exhibit a better performance. However, we are aware that real-

world traffic may bring up new challenges that are absent in synthesized data sets.

For example, we currently set the time window used to reorder alerts (that is, tmax as

discussed before as one second to deal with identical time stamps of alerts. In a real

network, the windows size must be decided based on the actual placement of IDS
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sensors and the typical network delays. In our future work, we plan to integrate our

correlation engine in our TVA tool and test it in real-world network settings.

6 Conclusion

This chapter has studied defending against multi-step attacks. We described methods

both for preventing such attacks from happening and for detecting and predicting

the attacks. The network hardening method enables us to reduce the threat of multi-

step attacks through removing vulnerabilities and reconfiguring our network. Unlike

previous approaches, the network hardening solutions we derive are in terms of
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initial conditions, which can be independently disabled. Such solutions take into

account the often complex relationships among exploits and conditions. In this way,

our solution is readily enforceable. The new algorithm we have proposed can derive

solutions with one-pass of search in the attack graph while avoiding logic loops. The

current algorithm builds the logic proposition then simplifies it. In our future work,

we shall pursue a solution that integrates the two steps into one single algorithm

such that redundant clauses in the proposition can be avoided.

We have also described methods that can be used in situations where not all

multi-step attacks can be avoided through network hardening. We identified limita-

tions in applying the nested loop-based correlation methods and proposed a novel

QG approach to remove this limitation. The method has a linear time complexity

and a quadratic memory requirement and can correlate alerts arbitrarily far away.

We further extended the QG approach to a unified method for the correlation, hy-

pothesis, and prediction of alerts. We also extend the method to produce a compact

version of result graphs with no transitive edges. Empirical results showed that our
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correlation engine can process alerts faster than an IDS can report them, making our

method a promising solution for an administrator to monitor the progress of intru-

sions. Our future work includes evaluating the techniques with real-world traffic in

live networks.
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Response: bridging the link between intrusion

detection alerts and security policies

Hervé Debar, Yohann Thomas, Frédéric Cuppens, and Nora Cuppens-Boulahia

Abstract With the deployment of intrusion detection systems has come the question

of alert usage. The current trend of intrusion prevention systems provides mecha-

nisms for isolated response, suffering from two important drawbacks. First, the re-

sponse is applied on a single point of the information system. Second, its application

is repeated every time an alert condition is raised. Both drawbacks result in a sub-

optimal response system, where security is improved at these particular network or

host access control points, but where service dependancies are not taken into ac-

count. In this paper, we examine a new mechanism for adapting the security policy

of an information system according to the threat it receives, and hence its behaviour

and the services it offers. This mechanism takes into account not only threats, but

also legal constraints and other objectives of the organization operating this informa-

tion system, taking into account multiple security objectives and providing several

trade-off options between security objectives, performance objectives, and other op-

erational constraints. The proposed mechanism bridges the gap between preventive

security technologies and intrusion detection, and builds upon existing technologies

to facilitate formalization on one hand, and deployment on the other hand.

1 Introduction

Managing information systems requires to make a compromise between multiple

parameters, one of them being security. Although security is of crucial interest, con-

straints such as performance and convenience are also to be strongly considered. In
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particular, being able to serve large numbers of users concurrently or to maintain

acceptable response times, while lightening the hardware budget, is a major issue,

and sometimes results in conflicting choices with respect to security. Moreover, ease

of use and automation are frequent requirements to provide better service to users.

Nowadays, this compromise between multiple adjustment variables is generally

defined statically at design time. However, security is not static, since new vulnera-

bilities, new users and usages, and new attackers continually appear, and similarly

for other variables. In particular, it is essential to reflect the evolution of the infor-

mation system through an up-to-date view of hardware and software, which impact

both performance and convenience, and thus maintain a better balance between the

different requirements, as time goes by.

Consequently, the compromise between the considered system adjustement vari-

ables needs to change, and in particular to respond to threats. This paper describes

a mechanism for threat management at the security policy level. The security policy

is dynamically updated with respect to current threats. This update is performed in

a global manner, ensuring that the whole security policy remains coherent and that

threats are handled by order of importance, even when threats have conflicting im-

pacts and may require conflicting countermeasures. Our policy update mechanism

also enables countermeasures with safeguards, ensuring that the security officer has

control over the most adverse operating conditions, and prevent self-inflicted de-

nial of service. We also provide an architecture to deploy such policies, mostly by

reusing already existing security and system management components and proto-

cols.

2 Problem statement

2.1 Domain terminology

Previous chapters of this book have described alerts generated by intrusion-detection

systems. In this chapter, we need to broaden the terminology used to introduce ad-

ditional concepts, as shown by the question marks in figure 1.

We reuse definitions introduced by the MAFTIA project for dependability and

security [1]. The central concept is the one of fault, that is defined as a breach of

the security policy. A synonym in the litterature is threat, used for example by J.

Anderson[2], E. Jonsson[15] or in RFC 2828[23]. We are particularly interested in

the notion of malicious fault, when an attacker can exercise the fault to carry out

an attack. When the attacker succeeds, such an attack becomes an intrusion; the

advantage gained may be reused by the attacker to carry out further attacks. In this

paper, we will use the terms fault and threat interchangeably to describe this same

concept.

To prevent these faults from occuring, the MAFTIA project defines four cate-

gories of actions ([1], p 9) that can be undertaken in parallel. Fault prevention aims
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at preventing the existence of faults. Fault tolerance aims at continuing operations

in the presence of faults. Fault removal aims at reducing the number or severity

of faults. Finally, fault forecasting aims at estimating the number and severity of

faults. Current intrusion detection and prevention systems are pertinent in the three

later cases, aiming at alerting the security officer when attacks or intrusions manifest

the existence of faults.

Fault prevention is outside the scope of our study, as we consider that patch man-

agement is an appropriate answer to the problem. If needed, we could incorporate

patch deployment into the framework as a definitive and irreversible countermea-

sure, but that would be contrary to the philosophy of our approach, which promotes

dynamicity (we do not want to “unpatch” systems automatically). We assume that

some threats will not be removed, as their removal would have an adverse effect

on the global system (for example adversely affecting cost), or because the security

policy specifies contradicting objectives (e.g. the duality availability/confidential-

ity). Thus, system operation in the presence of these threats is a requirement. We are

specifically interested in providing solutions for fault tolerance and fault removal,

and handle fault forecasting as a possible side effect of our system, to be studied in

future work. We further reduce the problem by observing that fault tolerance and re-

moval assume the capability to first identify the fault and then act on it. We assume

that fault detection will be handled by intrusion detection and security information

management systems, and focus on actions to be carried out to the effect of tolerance

or removal. We call these actions response.

Figure 1 also shows that response could be understood as threat, attack or intru-

sion response. With respect to intrusion detection, the most obvious term to define

is attack response, i.e. responding to alerts that indicate an attack, a possible breach

of security policy. Focusing on intrusion response would indicate that our system

would only respond to successful attack. Threat response indicates that our system

is specified from all latent faults, even though they may not materialize as attacks.
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2.2 Intrusion Prevention and Response

Intrusion detection systems now belong to the arsenal of mainstream security tools

and are deployed within organizations to monitor the information system and re-

port security threats. While many issues have been highlighted with the diagnosis

proposed by intrusion detection systems, the technology has matured sufficiently to

tackle the problem of intrusion prevention. In particular, correlating alerts with the

inventory of the hosts [24] allows to better characterize intrusions, through corre-

lation with vulnerabilities, alert severity mitigation, and false positive recognition.

The objective of intrusion prevention is not only to detect threats but also to block

them, to prevent the attacker from building upon its advantage and further propa-

gating within the information system, and this has been forecasted for quite some

time [3].

Intrusion prevention currently means that when an alert is triggered, a mecha-

nism is activated to terminate the network connection or the process associated with

the event. Network-based intrusion prevention devices effectively act like classic

firewalls, adding the capability to block traffic based on packet content in addi-

tion to headers and connection context. Response is statically associated with each

alert, which leads to undesirable side effects [25]. Host-based intrusion prevention

software has the capability to terminate a process that is trespassing or abusing its

privileges, as shown by [21], but is limited to a single machine. In many cases, the

time to react is so small that the threat response mechanism is implemented very

close to the detection mechanism, to ensure that the response is effective in deal-

ing with the threat. Previous network-based threat response mechanisms based on

connection termination by TCP reset injection have shown that they have undesir-

able side effects in certain contexts, as shown in RFC 3360 [13] and that including

response mechanisms online is a requirement for timely and successful response.

We argue that while threat response in itself is a desirable goal, the implemen-

tation of threat response at the intrusion prevention system level yields undesirable

side effects. First of all, the response is based on an event analyzed by the intrusion

prevention device. This means that for every malicious event, the threat response

must be applied; unfortunately, this results in a default permit (or open) security

policy, where only events that trigger an alert during the analysis process will be

blocked. More generally, the decision on which the threat response is based is a lo-

cal decision, which does not take into account other operating constraints. This has

two undesirable side effects, 1. operators lacking the global vision of the behaviour

of the information system will be reluctant to activate threat response mechanisms,

and 2. local responses may interfere with global desired behaviour. The objective of

the paper is to propose a more comprehensive approach to threat response.
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2.3 Comprehensive Approach to Response

We observe that the deployment of modern information systems and networks is as-

sociated with access control technologies, located at critical points of the network.

We therefore would like to link the threat detection performed by intrusion detec-

tion / prevention systems and the access control mechanisms, to provide an adaptive

security policy capable of dynamically adjusting to threats. This comprehensive ap-

proach does not compete with the immediate application of threat response mecha-

nisms by intrusion prevention systems, but should take over the application of threat

response once the threat is properly characterized.

We assume in this approach that intrusion detection systems and alert correlation

techniques allow a clear identification of the threat, including the threat type (typ-

ically represented by a set of signatures and references to vulnerability databases),

the threat origin (represented in most cases by an IP address), and the threat victim

(represented by a host under our control, a process, or any set of components of our

information system), as in [8] for example. As shown in [24], it is indeed possible to

use configuration information to adapt the detection mechanism to its environment,

thus ensuring that contextual information in the alerts is exhaustive and correct.

While this assumption may be considered strong given the history of false positives

and negatives that has plagued intrusion detection research, we do believe that cur-

rent intrusion detection systems, both commercial and research prototypes, allow a

reasonable identification of the threat, and that they will make sufficient progress

that the three parameters on which we rely will be filled with appropriate values.

3 Security Policy Formalism

In this section, we provide background on the security policy formalism and de-

scribe a use case.

3.1 Choice of a Security Policy Formalism

Most of current security models such as DAC [14] or RBAC [22] can only be used

to specify static security policies. When an intrusion occurs, the security admin-

istrator has to manually update the policy by removing obsolete security rules or

inserting new security rules. Unfortunately, the time required for such a manual up-

date is generally too long to represent an effective way to react to an intrusion. The

administrator has also to update the policy again once the intrusion is circumvented

to restore the policy in a state corresponding to a non intrusive context. Note that in

this paper, we will use the terms policy rule and security rule indifferently to specify

security policy statements.
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Our objective is to design a method to help the administrator in these tasks of

updating the policy. For this purpose, we need a model to specify security policies

that dynamically change when some intrusion is detected. In the absence of intru-

sion, the policy to be applied corresponds to a nominal context. Other contexts must

be defined to specify additional security rules to be triggered when intrusions are

detected. In fact, a parallel could be drawn with provisional authorizations [17];

contexts are linked to the history of reported intrusions, and activate provisional se-

curity rules. Some of these security rules may correspond to permissions (positive

authorizations) but more often they will represent prohibitions (negative authoriza-

tions). The prohibitions will be automatically deployed over the information system

as a reaction to the intrusion. For instance, this may correspond to automatically

insert a new deny rule in a firewall.

Thus, the model to be used must provide means to manage conflicts between

permissions and prohibitions. In particular, the policy associated with a nominal

context can include minimal security requirements. These minimal requirements

must not be overridden, even when an intrusion is detected. For instance, they may

include minimal availability requirements. Of course, these minimal requirements

may conflict with contextual rules associated with the detection of a given intrusion.

In this case, simple strategies such as prohibition takes precedence or permission

takes precedence will not be appropriate to solve the conflict. Instead, the model

must include the possibility to specify high level conflict management strategies to

find the best compromise between conflicting rules [6].

The model must also provide an abstract and global view of the security policy.

This is the purpose of the Policy Instantiation Engine (PIE, see Section 5.1 below)

to manage this global security policy. The PIE will have to clearly separate the

global policy from its implementation in the PEPs (Policy Enforcement Points). In

particular, the conflicts are to be solved at the abstract level before generating PEPs

configurations. Unfortunately, most security models do not provide such a clear

separation.

In this paper, we suggest using an approach based on the Or-BAC model [18].

In the following section, we briefly present the main concepts used in Or-BAC to

specify a security policy and explain why this model is a good candidate to manage

the kind of contextual security policies we need to support our proposal.

3.2 The Or-BAC Formalism

The concept of organization is central in the Or-BAC model [16]. Intuitively, an

organization is any entity that is responsible for managing a security policy. Thus,

a company is an organization, but concrete security components such as a firewall

may be also viewed as an organization.

The objective of Or-BAC is to specify the security policy at the organizational

level, that is abstractly from the implementation of this policy. Thus, instead of

modeling the policy by using the concrete and implementation-related concepts of
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subject, action and object, the Or-BAC model suggests reasoning with the roles that

subjects, actions or objects play in the organization. The role of a subject is simply

called a role as in the RBAC model. On the other hand, the role of an action is called

an activity whereas the role of an object is called a view.

Each organization can then define security rules which specify that some roles

are permitted or prohibited to carry out some activities on some views. These se-

curity rules do not apply statically but their activation may depend on contextual

conditions. For this purpose, the concept of context is explicitly introduced in Or-

BAC. Thus, using a formalism based on first order logic, security rules are modeled

using a 6-places predicate:

• security rule(type, org, role, activity, view, context) where type belongs to

{permission, prohibition}.

For instance, the following security rule:

• security rule(prohibition,corp, pop user,read pop,mail server, pop threat).

means that, in organization corp, a pop user is forbidden to use the pop service to

consult his or her mail in the context of pop threat.

All these concepts, organization, role, activity, view and context, may be struc-

tured hierarchically. Permissions and prohibitions are both inherited through these

hierarchies (see [5] for more details).

Since a given security policy may include permissions and prohibitions, conflict

management strategies have to be defined to solve the possible conflicts. In Or-BAC,

such a strategy consists in assigning a priority to each security rule [6]. Priorities

define a partial order on the set of security rules so that when a conflict occurs

between two rules, preference is given to the rule with the higher priority. Priority

assigned to security rules must be compatible with hierarchies defined on entities

such as organization, role, activity, view and context. Thus, in case of conflict, if a

given security rule is inherited by a given entity, this rule will have lower priority

than another security rule explicitly assigned to this entity.

Once the organizational security policy is defined, it is possible to check if the

conflict management strategy is effective, that is it will solve every conflict at the

concrete level (see [18] for further details). Since the Or-BAC model abides to the

Datalog restrictions [26], we can prove that it is possible to decide in polynomial

time that a conflict management strategy is effective.

The organizational policy is then used to automatically derive concrete configu-

rations of PEPs. For this purpose, we need to assign to subjects, actions and objects,

the roles they play in the organization. In the Or-BAC model, this is modeled using

the three following 3-places predicates:

• empower(org,sub ject,role): means that in organization org, sub ject is empow-

ered in role.

• consider(org,action,activity): means that in organization org, action is consid-

ered an implementation of activity.

• use(org,ob ject,view): means that in organization org, ob ject is used in view.
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For instance, the fact empower(corp,alice, pop user) means that organization

corp empowers Alice in role pop user.

Notice that, instead of enumerating facts corresponding to instances of predicate

empower, it is also possible to specify role definitions which correspond to logical

conditions that, when satisfied, are used to derive that some subjects are automati-

cally empowered in the role associated with the role definition. Activity and view

definitions are similarly used to automatically manage assignment of action to ac-

tivity and object to view. For instance, in a network environment, we can use a role

definition to specify that every host in the zone 111.222.1.0/24 are empowered in

the role DMZ.

Notice that we shall use Prolog notation to specify Or-BAC security policies.

For this purpose, the only important Prolog constructs to remember are that con-

stant values start with a lowercase character, that variables start with an uppercase

character, and that denotes any value.

3.3 Or-BAC Contexts

Regarding contexts, we have also to define logical conditions to characterize when

contexts are active. In the Or-BAC model, this is represented by logical rules that

derive the following predicate:

performs action on ob ject in context context.

We say that context c is active in organization org when it is possible to derive

hold(org,s,a,o,c) for some subject s, action a and object o.

Using the model, one can then derive concrete authorizations that apply to sub-

ject, action and object from organizational security rules. This is modeled by the

derivation rule shown in listing 1. In an organization Org, the security rule expresses

a permission for a given Role to make a given Activity on a given View in a given

Context. The predicates empower, consider and use indicate that Role, Activity and

View are respectively abstractions of Sub ject, Action and Ob ject in the considered

organization. When the considered Context is being held for Sub ject, Action and

Ob ject through the hold predicate, we can thus derive the fact that it is permitted

for Sub ject to make Action on Ob ject.

• hold(org,sub ject,action,ob ject,context): means that in organization org, sub ject
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Listing 1 Derivation of concrete authorizations

i s p e r m i t t e d ( S u b j e c t , Act ion , O b j e c t ) :−
s e c u r i t y r u l e ( p e r m i s s i o n , Org , Role , A c t i v i t y , View , C o n t e x t ) ,
empower ( Org , S u b j e c t , Role ) ,
c o n s i d e r ( Org , Act ion , A c t i v i t y ) ,
use ( Org , Objec t , View ) ,
ho ld ( Org , S u b j e c t , Act ion , Objec t , C o n t e x t ) .

This general principle of derivation of concrete authorizations from organi-

zational authorizations is used to automatically generate concrete configurations

(see [7] for further details in the case of network security policies).

3.4 Presentation of a use case

To illustrate the response mechanism, we present the following use case, access to

mail. Users have access to their mail located on remote exchange servers. They can

use three different mail clients, outlook, thunderbird and firefox, over four different

transport mechanisms, the outlook mail client accessing the exchange server through

native microsoft protocols, thunderbird accessing the POP and IMAP extensions

of the same exchange servers, and Firefox accessing the OWA 1 extension of the

same exchange servers. In normal operation, all these four modes are active and

allow parallel access to the same information, the consistency being preserved by

the backend exchange server.

3.4.1 Use case illustration

Figure 2 provides a description of the various entities involved in this use case.

This description is layered to ease understanding of these entities, but a request for

access will contain information belonging to all three layers. At the transport layer,

a network packet contains information about IP addresses and ports in the headers,

and commands and data for the programs in the packet payload according to the

application-layer protocol specification. This is also true at the service layer, where

commands and data are presented to the processes that obey and manipulate them.

In the case study, the ACE, PIE and PDP are implemented as Prolog predicates in

SWI-Prolog, and the PEP as XSLT transformations. The components of the model

(graphs of abstractions and instances) are modeled in a straightforward way using

Prolog facts, empower, consider and use.

1 Outlook Web Access
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Fig. 2 Presentation of the use case

3.4.2 Horizontal layer segmentation

The information layer at the top models interactions between the humans and the

information they wish to access. In our use case, users wish to access their mail

messages. The middle layer represent the system intermediaries, typically programs,

that make this mail reading possible. In our use case, mail clients such as Microsoft

Outlook™, Mozilla Thunderbird or Mozilla Firefox2 interact with mail servers such

as Microsoft Exchange™. The bottom layer represents the communication chan-

nels, enabling communication between machines; in our case, this enables the ex-

change of TCP/IP packets between user workstations and servers.

3.4.3 Vertical segmentation

In addition to the layer segmentation, figure 2 also introduces a vertical separation.

In addition to the classic Subject/Object duality, there are a large number of infras-

tructure functions that enable communication at one of the layers. Without these

infrastructure functions, access is at best impaired and at worst impossible. Hence,

they represent an attractive target for attackers and a possibility of countermeasure

for the defender, and we wish to extend the classic policy model of subjects and

objects by representing these components.

In our use case, user workstations rely on DNS to identify the target machine.

User logins and access to information rely on ActiveDirectory to identify and au-

2 used as support for webmail access
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thenticate users, and associate user logins with mail boxes. They also need to tra-

verse firewalls and intrusion detection/prevention systems. Note that it is not nec-

essary to create new concepts to model these infrastructure entities; subjects and

objects apply to them as well. Their presence in the model improves the under-

standing of the security policy and widens opportunities for threat response, since

any combination of these elements can be leveraged.

3.4.4 Impact on policy enforcement

The vertical segmentation requires that our model for policy translation incorporate

the ability to model reliably the infrastructure components and their interactions.

We must incorporate contextual information, such as routing, that is not directly

included in alerts (and rarely included in high-level security policies), that enables

our system to infer the appropriate policy enforcement points where the policy is

applicable and effective. Such a policy system also implies that there is a capability

to collect and correlate state and contextual information (as is currently done in in-

trusion detection systems). With respect to state, the establishment of connectivity

at the transport layer such as the three way TCP handshake will be required before

users can present credentials such as user names, passwords and mailboxes. Higher

up, we need to recognize service states (login in, logged in, etc.) and associations

between sessions and users. With respect to information inference, we need to make

use of configuration information, as in alert correlation. For example, while firefox

will present its identity to OWA, Thunderbird and Exchange may not indicate them-

selves to the server. Furthermore, this identification information can be spoofed (it

is for example very easy to fake the user agent of a web browser to another one).

Our system will not be able to enforce the usage of firefox instead of opera or the

usage of outlook instead of evolution if it only relies on transport level or view-side

policy enforcement points. As long as the protocol exchanges are correct, we will

not be able to model this at the abstract level or recognize it at the concrete level;

this can only be enforced by a role-side, service-level policy enforcement point.

We are currently working on the representation of such models and are confident

that the basic technologies, particularly state and correlation, can be provided by the

intrusion detection and security information components available today.

3.5 Modelling of the use case

We now model the use case, define the appropriate abstract entities and describe

their relationships with concrete entities. To do this, we will adopt whenever needed

a simple tree representation, where properties defined at one node propagate to the

nodes below. Abstract entities are represented as ovals and concrete entities are

represented as square boxes. Note that we do not claim that the model is exhaustive;

we will limit our description to the needed components.
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3.5.1 Roles and views

Since roles and views have symetric behaviour with respect to the policy, we de-

scribe them together in figure 3. Both are segmented according to the three layers of

2; while this is not absolutely necessary and we could attach the various components

that are in the layers to the MailRole or MailViews nodes, it provides additional

segmentation that will prove useful for defining and analyzing countermeasures.

Accordingly, the various concrete objects are attached to the appropriate abstract

nodes.

INFORMATION
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Fig. 3 Model of roles and views

This model presents a simplified view of the system. We model services by their

startup/shutdown script names, mailboxes by the email address, mail clients by their

names, and machines by their names. In a complete model, we would need more de-

tails on the various processes that intervene in the execution of a particular program,

or relationships between machine names and IP addresses. These details could ei-

ther be stated as additional facts or inserted as knowledge-gathering activities (e.g.

using DNS to resolve host names into IP addresses).

We therefore obtain the appropriate role hierarchy, empower and use, as ex-

pressed in listing 2 (using the prolog formalism that we reuse in this chapter; the

information is expressed as prolog facts).
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Listing 2 Definition of roles and views

r o l e ( org , ’ Mai lRole ’ ) .
r o l e ( org , ’ Mai lUser ’ ) .
r o l e ( org , ’ M a i l C l i e n t ’ ) .
r o l e ( org , ’ M a i l S t a t i o n ’ ) .
s u b r o l e ( org , ’ Mai lUser ’ , ’ Mai lRole ’ ) .
s u b r o l e ( org , ’ M a i l C l i e n t ’ , ’ Mai lRole ’ ) .
s u b r o l e ( org , ’ M a i l S t a t i o n ’ , ’ Mai lRole ’ ) .

empower ( org , ’ a l i c e ’ , ’ Mai lUser ’ ) .
empower ( org , ’ T h u n d e r b i r d ’ , ’ M a i l C l i e n t ’ ) .
empower ( org , ’ Out look ’ , ’ M a i l C l i e n t ’ ) .
empower ( org , ’ F i r e f o x ’ , ’ M a i l C l i e n t ’ ) .
empower ( org , ’PC−A l i c e ’ , ’ M a i l S t a t i o n ’ ) .

view ( org , ’ MailView ’ ) .
view ( org , ’ Mailbox ’ ) .
view ( org , ’ M a i l S e r v i c e ’ )
view ( org , ’ M a i l S e r v e r ’ )
subview ( org , ’ Mailbox ’ , ’ MailView ’ ) .
subview ( org , ’ M a i l S e r v i c e ’ , ’ MailView ’ ) .
subview ( org , ’ M a i l s e r v e r ’ , ’ MailView ’ ) .

use ( org , ’ al ice@wanadoo . n e t ’ , ’ Mailbox ’ ) .
use ( org , ’OWA’ , ’ M a i l S e r v i c e ’ ) .
use ( org , ’ / e t c / imapd ’ , ’ M a i l S e r v i c e ’ ) .
use ( org , ’ / e t c / popd ’ , ’ M a i l S e r v i c e ’ ) .
use ( org , ’ / e t c / s e n d m a i l ’ , ’ M a i l S e r v i c e ’ ) .
use ( org , ’ Exchange ’ , ’ M a i l S e r v i c e ’ ) .
use ( org , ’MEL1 ’ , ’ M a i l S e r v e r ’ ) .

The role and subrole (resp. view and subview) predicates construct the role (resp.

view) hierarchy. Note that this listing is biased; in any realistic deployment, there

should be many more concrete entities than abstract entities. The ratio of one to one

in the listing is not representative of a realistic setting.

3.5.2 Activities

Activities are described in figure 4. The segmentation accross layers appears in this

figure in the content of the square box, representing either ports or commands to

the service. We have further segmented mail under three activities, connecting to

the mailbox, reading mail and sending mail. This segmentation is introduced with

respect to the response system, where options such as preventing new sessions but

letting existing sessions continue, or letting users read but not send mail, are opening

up additional opportunities for the response system to focus and limit the response

on the area under attack.

Activities are modeled at the information level by retaining the various keywords

used by the protocols to open the connection between the mail client and the mail

server, and at the service and transport layer by the protocols and ports involved.

Since protocols and ports are both found in IP packets and on machine (as bound

ports), it is sufficient to model them with a single concrete object. For convenience,

we are using a regular-expression-like notation for the microsoft protocols, since

they need to be configured together to enable the activity to succeed. Protocol key-

words for POP, IMAP and SMTP are taken from Request for Comments (RFC)
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1939, 2060 and 2821 respectively, although we have only introduced here a subset

of these keywords. Keywords for OWA are inspired from the interface button names

but should ideally associate URLs and AJAX commands. Since the Exchange/Out-

look dialog is not a public standard, we have introduced meta-keywords that corre-

spond to the various mail-related activities of Exchange.

In figure 4, we also have to acknowledge that this granularity does not apply

to all possible activities. For example, the direct connection between the Microsoft

Outlook mail reader and the Microsoft Exchange mail server limits our capability

to separate get and send at the network layer, because all three sub-activities use

the same set of ports. This is the same for the separation between login and read

at the network layer. The login activity, however, is separable at the service layer,

for example by manipulating the active directory server to prevent exchange login

requests to succeed, or by filtering out IMAP and POP3 login requests.

Activities are described in listing 3. We have not listed all the consider facts, but

the reader can easily construct them from figure 4.

Listing 3 Definition of activities

a c t i v i t y ( org , ’ MailA ’ ) .
a c t i v i t y ( org , ’ Access ’ ) .
a c t i v i t y ( org , ’ Read ’ ) .
a c t i v i t y ( org , ’ Wr i t e ’ ) .
s u b a c t i v i t y ( org , ’ Access ’ , ’ MailA ’ ) .
s u b a c t i v i t y ( org , ’ Read ’ , ’ MailA ’ ) .
s u b a c t i v i t y ( org , ’ Wr i t e ’ , ’ MailA ’ ) .

c o n s i d e r ( org , ’TCP / ( 8 0 | 1 3 [ 5 , 7 , 8 , 9 ] ) ’ , ’ MailA ’ )
c o n s i d e r ( org , ’TCP/110 ’ , Access ’ ) .
c o n s i d e r ( org , ’TCP/143 ’ , Access ’ ) .
c o n s i d e r ( org , ’TCP/110 ’ , ’ Read ’ ) .
c o n s i d e r ( org , ’TCP/143 ’ , ’ Read ’ ) .
c o n s i d e r ( org , ’TCP/ 2 5 ’ , Write ’ ) .
c o n s i d e r ( org , ’ Exchange : l o g i n ’ , ’ Access ’ ) .
c o n s i d e r ( org , ’POP3 : APOP ’ , ’ Access ’ ) .
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c o n s i d e r ( org , ’IMAP : LOGIN ’ , ’ Access ’ ) .
c o n s i d e r ( org , ’SMTP:HELO ’ , ’ Access ’ ) .
c o n s i d e r ( org , ’OWA: u s e r ’ , ’ Access ’ ) .
c o n s i d e r ( org , ’POP3 : STAT ’ , ’ Read ’ ) .
c o n s i d e r ( org , ’IMAP : SELECT ’ , ’Read ’ ) .
c o n s i d e r ( org , ’SMTP: MAIL ’ , ’ Write ’ ) .
c o n s i d e r ( org , ’ Exchange : send ’ , ’ Write ’ ) .

Note that the normal behaviour of certain protocols puts demands on the model.

The rattachement of TCP/(80|13[5,7,8,9]) to ’MailA’ is due to the fact that at the

network level, all activities related to the Oulook-Exchange or Firefox-OWA con-

nections cannot be differentiated easily. However, the service level does differenci-

ate access, read and write activities.

3.5.3 Contexts

For the normal operation of our system, we only need one context, the ’MyMailbox’

context, whose objective is to ensure that the user can only access his mailbox.

This is necessary because access to the mailbox relies on access to the information

system, and there is a need to link the authentication data (login,password) to the

mailbox. The ’MyMailbox’ context inherits from the ’Normal’ context as shown

in listing 4. We also define a partial order between contexts by indicating that the

’MyMailbox’ context has priority over the ’Normal’ context.

Listing 4 Definition of contexts

c o n t e x t ( org , ’ Normal ’ ) .
c o n t e x t ( org , ’ MyMailbox ’ ) .
s u b c o n t e x t ( org , ’ MyMailbox ’ , ’ Normal ’ ) .
c o n t e x t p r i o r i t y h i g h l o w ( org , ’ MyMailbox ’ , ’ Normal ’ ) .

ho ld ( org , S u b j e c t , Act ion , Objec t , ’ MyMailbox ’ ) :−
empower ( org , S u b j e c t , ’ Mai lUser ’ ) ,
c o n s i d e r ( org , Act ion , ’ MailA ’ ) ,
use ( org , Objec t , ’ Mailbox ’ ) ,
a r e l i n k e d i n a c t i v e d i r e c t o r y ( S u b j e c t , O b j e c t ) .

ho ld ( org , S u b j e c t , Act ion , Objec t , ’ MyMailbox ’ ) :−
empower ( org , S u b j e c t , ’ M a i l C l i e n t ’ ) ) ,
c o n s i d e r ( org , Act ion , ’ MailA ’ ) ,
use ( org , Objec t , ’ M a i l S e r v i c e ’ ) ) .

ho ld ( org , S u b j e c t , Act ion , Objec t , ’ MyMailbox ’ ) :−
empower ( org , S u b j e c t , ’ M a i l S t a t i o n ’ ) ) ,
c o n s i d e r ( org , Act ion , ’ MailA ’ ) ,
use ( org , Objec t , ’ M a i l S e r v e r ’ ) ) .

The hold predicates are written in listing 4 using primitives to interrogate the

Active Directory server. Since information about subjects and objects is separated

in three layers, only the higher layer is pertinent for the assertion of the MyMailbox

context, as described in the first hold statement. This hold statement verifies that the

request is presented with a user name and a mailbox, and queries the active directory

server for the connection between the two. However, if we only allow this, we will

not succeed in deploying the security policy on policy enforcement points located

below the information layer : the hold statement will never be satisfied, because
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this association only occurs at the information layer. Since servers and processes

are shared by all users, the second and third hold statements satisfy the policy for

lower-level policy enforcement points.

3.5.4 Security rules

Within the above model, the security policy is expressed by the two simple rules of

listing 5.

Listing 5 Definition of contexts

s e c u r i t y r u l e ( p e r m i s s i o n , org , MailRole , MailA , MailView , MyMailbox ) .
s e c u r i t y r u l e ( p r o h i b i t i o n , org , MailRole , MailA , MailView , Normal ) .

According to this policy, users are prevented from reading mailboxes in general.

However, a potential conflict occurs when the MyMailbox context holds, and the

higher priority of the MyMailbox context with respect to the Normal context enables

access.

4 Applying Or-BAC for threat response

Or-BAC contexts provide a natural way to include threat response into Or-BAC

policy rules, to create specific rules that apply during an attack. The central idea

of our proposal is based on using contexts to model how to dynamically update

the security policy when a threat is detected. Therefore, the core of our proposal is

to manage contexts according to threat information. Note that we generically talk

about threat contexts to refer to contexts used to characterize threats and to provide

threat response. Thus, examples of threat contexts may in fact refer to attacks or

intrusions (successful attacks). For instance, syn flooding and pop attack are two

examples of threat contexts.

We present in this section how we define atomic and composed contexts, and

how we aim at activating and deactivating these contexts according to threat level.

4.1 Examples of threat contexts

We propose here two examples of threats and explain how response is managed de-

pending on the active hold predicates and the security rules describing the policy

to apply in such cases. Listings follow the prolog syntax (SWI-Prolog is our imple-

mentation language), altough with a simplified representation of the alerts, as the

IDMEF XML representation results in deeply imbricated lists that we have simpli-

fied to ease comprehension – alerts are abstracted as position dependant 4-tuples
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(timestamp, attack source, attack destination, attack identification), each of these

4-tuples being represented by a list of (IDMEF token, value) pairs.

4.1.1 Syn-flooding attack

Let us imagine a Syn-flooding attack towards a webserver. We use IDMEF messages

(as explained in Section 4.4.1) to say that if a given alert message is received with

(1) a classification reference equal to CVE-1999-0116 (corresponding to the CVE

reference of a Syn-flooding attack) and (2) the target is attacked through a service

whose name is htt p (or port is tcp/80) and (3) the target corresponds to a network

node whose name is ws, then the syn f looding context is active for htt p action on

ws object. The corresponding translation in Prolog can be found in Listing 6.

Listing 6 syn flooding context definition

% S i m p l i f i c a t i o n o f a l e r t i n f o r m a t i o n e x t r a c t i o n

c o n t e n t (K , [ [ K, E ] | ] , E ) .
c o n t e n t (K , [ [ , ] | L ] , E ) :−

c o n t e n t (K, L , E ) .

c o n t e n t l i s t ( [ ] , , [ ] ) :− ! .
c o n t e n t l i s t ( [K |LK] ,X, LER) :−

f i n d a l l ( Es , c o n t e n t (K, X, Es ) , E ) ,
c o n t e n t l i s t (LK, X, LE ) ,
f l a t t e n ( [ E , LE ] , LER1 ) ,
s o r t ( LER1 , LER ) .

% s y n f l o o d c o n t e x t d e s c r i p t i o n

ho ld ( corp , , Act ion , Objec t , ’ s y n f l o o d i n g ’ ) :−
a l e r t ( CreateTime , Source , Ta rge t , C l a s s i f i c a t i o n ) ,
c o n t e n t ( ’ r e f e r e n c e ’ , C l a s s i f i c a t i o n , ’CVE−1999−0116 ’ ) ,
c o n t e n t l i s t ( [ ’ s e r v i c e ’ ] , Ta rge t , A c t i o n ) ,
c o n t e n t l i s t ( [ ’ hos tname ’ ] , Ta rge t , O b j e c t ) .

% A r r i v a l o f an a l e r t

a l e r t ( ’ 2 0 0 1 / 0 1 / 0 1 0 1 : 0 1 : 0 1 ’ ,
[ [ ’ h o s t a d d r e s s ’ , ’ 1 . 2 . 3 . 4 ’ ] ] ,
[ [ ’ s e r v i c e ’ , ’ h t t p ’ ] , [ ’ hos tname ’ , ’ws ’ ] ] ,
[ [ ’ r e f e r e n c e ’ , ’CVE−1999−0116 ’ ] ] ) .

% The f o l l o w i n g now h o l d s

?− ho ld ( Org , S u b j e c t , Act ion , Objec t , C o n t e x t ) .

Org = corp ,
Ac t i on = [ h t t p ] ,
O b j e c t = [ ws ] ,
C o n t e x t = s y n f l o o d i n g ;

?−

Notice that, since in a Syn-flooding attack, the intruder is spoofing its source

address, the subject corresponding to the threat origin is not instantiated in the hold

predicate which is represented by “ ”.

When an attack occurs and a new alert is launched by the intrusion detection

process, (a) new fact(s) hold(org,s,a,o,c) is (are) derived for some threat context c.

So, c is now active and the security rules associated with this context are triggered

to react to the intrusion.



146 Hervé Debar et al.

Notice that our approach provides fine-grained reaction. For instance, let us con-

sider a network where a given host ws is assigned to the role web server. Let us as-

sume that a Syn-flooding attack is detected against this host on port tcp/80, which

corresponds to service htt p. In this case, we shall derive the following fact:

• hold(org, ,htt p,ws,syn f looding): means that host ws is now in the threat con-

text syn f looding through htt p.

Since the syn f looding context is now active, security rules associated with this

context are triggered. For instance, let us assume that there is the following security

rule:

tcp service activity on the web server.

This security rule is triggered once the syn f looding context is active. However,

only host ws (whose role is web server) is in the context of syn f looding through

htt p (which is a tcp service). As a consequence, the reaction will not close every tcp

service from the Internet to every web server. Instead, the reaction in this case will

be limited to close htt p from the Internet to host ws.

4.1.2 Pop reconnaissance attack

Imagine now that an internal attacker is attempting a reconnaissance attack on a

pop3 server in order to determine valid users. The reference CVE-2005-1133 is an

instance of such an attack for a pop3 server in IBM iSeries AS/400.

The definition of the pop attack context says that if a given alert message is

received with (1) a classification reference equal to CVE-2005-1133 (corresponding

to the CVE reference of a pop reconnaissance attack) and (2) the target is attacked

through a service whose port is tcp/110 (or name is pop3) by (3) a source that

corresponds to a mail user whose name is charlie and (4) the target corresponds to

a network node whose name is ms, then the pop attack context is active for charlie

subject making tcp/110 action on ms object. Notice that we face here an internal

attack and we consider that the diagnostic has revealed that the source is not a decoy,

so we are able to instantiate the subject being the source in the hold predicate. The

definition of the hold facts is more complex here, due to the need to maintain the

coherence between the information, service and transport layers. The corresponding

translation in Prolog can be found in Listing 7.

f looding, internet is prohibited to performmeans that, in the threat context syn

f looding):• security rule (prohib, org, internet, tcp service, web server, syn
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Listing 7 pop attack context definition

% S i m p l i f i c a t i o n o f a l e r t i n f o r m a t i o n e x t r a c t i o n

c o n t e n t (K , [ [ K, E ] | ] , E ) .
c o n t e n t (K , [ [ , ] | L ] , E ) :−

c o n t e n t (K, L , E ) .

c o n t e n t l i s t ( [ ] , , [ ] ) :− ! .
c o n t e n t l i s t ( [K |LK] ,X, LER) :−

f i n d a l l ( Es , c o n t e n t (K, X, Es ) , E ) ,
c o n t e n t l i s t (LK, X, LE ) ,
f l a t t e n ( [ E , LE ] , LER1 ) ,
s o r t ( LER1 , LER ) .

% pop a t t a c k c o n t e x t d e s c r i p t i o n

ho ld ( corp , S u b j e c t , Act ion , Objec t , ’ p o p a t t a c k ’ ) :−
a l e r t ( CreateTime , Source , Ta rge t , C l a s s i f i c a t i o n ) ,
c o n t e n t ( ’ r e f e r e n c e ’ , C l a s s i f i c a t i o n , ’CVE−2005−1133 ’ ) ,
c o n t e n t l i s t ( [ ’ username ’ ] , Source , S u b j e c t ) ,
c o n t e n t l i s t ( [ ’ m a i l a d d r ’ , ’ f i l e ’ ] , Ta rge t , O b j e c t ) .

ho ld ( corp , S u b j e c t , Act ion , Objec t , ’ p o p a t t a c k ’ ) :−
a l e r t ( CreateTime , Source , Ta rge t , C l a s s i f i c a t i o n ) ,
c o n t e n t ( ’ r e f e r e n c e ’ , C l a s s i f i c a t i o n , ’CVE−2005−1133 ’ ) ,
c o n t e n t l i s t ( [ ’ h o s t a d d r ’ , ’ hos tname ’ ] , Source , S u b j e c t ) ,
c o n t e n t l i s t ( [ ’ s e r v i c e ’ ] , Ta rge t , A c t i o n ) ,
c o n t e n t l i s t ( [ ’ h o s t a d d r ’ , ’ hos tname ’ , ’ p r o c e s s ’ ] , Ta rge t , O b j e c t ) .

% A r r i v a l o f an a l e r t

a l e r t ( ’ 2 0 0 2 / 0 2 / 0 2 0 2 : 0 2 : 0 2 ’ ,
[ [ ’ h o s t a d d r ’ , ’ 1 . 2 . 3 . 4 ’ ] , [ ’ hos tname ’ , ’ c h a r l i e w s ’ ] ,

[ ’ username ’ , ’ c h a r l i e ’ ] ] ,
[ [ ’ s e r v i c e ’ , ’ t c p /110 ’ ] , [ ’ p r o c e s s ’ , ’ / e t c / i n i t d / pop ’ ] ,

[ ’ f i l e ’ , ’ / v a r / s p o o l / ma i l / c h a r l i e ’ ] ,
[ ’ hos tname ’ , ’ms ’ ] , [ ’ m a i l a d d r ’ , ’ c h a r l i e @ n e t . n e t ’ ] ] ,

[ [ ’ r e f e r e n c e ’ , ’CVE−2005−1133 ’ ] ] ) .

% The f o l l o w i n g now h o l d s

?− ho ld ( Org , S u b j e c t , Act ion , Objec t , C o n t e x t ) .

Org = corp ,
S u b j e c t = [ c h a r l i e ] ,
O b j e c t = [ ’ / v a r / s p o o l / ma i l / c h a r l i e ’ , ’ c h a r l i e @ n e t . n e t ’ ] ,
C o n t e x t = p o p a t t a c k ;

Org = corp ,
S u b j e c t = [ ’ 1 . 2 . 3 . 4 ’ , c h a r l i e w s ] ,
Ac t i on = [ ’ t c p /110 ’ ] ,
O b j e c t = [ ’ / e t c / i n i t d / pop ’ , ms ] ,
C o n t e x t = p o p a t t a c k ;

?−

In this case, we shall derive the following hold facts:

• hold(org,charlie,, [
′charlie@net.net ′,′/var/spool/mail/charlie′], pop attack):

means that mailbox charlie@net.net (and its sibling representation ’/var/spool/-

mail/charlie’ mail spool file) is now in the threat context pop attack, the at-

tacker being user charlie.

the attack coming from workstation charliews with IP address 1.2.3.4

• hold(org,[’1.2.3.4’, charliews],[’tcp/110’],[’/etc/initd/pop’,ms],pop attack)means

processes /etc/initd/pop and server ms are now in the threat context pop attack,
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Since the pop attack context is now active, security rules associated with this

context are triggered. For instance, let us assume that there is the following security

rule:

• security rule(prohib,org,mail user,read pop,mail server, pop attack):
means that, in the threat context pop attack, a mail user is prohibited to per-

form read pop activity on the mail server.

This security rule is triggered once the pop attack context is active. However,

only host ms (whose role is mail server) is in the context of pop attack through

port tcp/110 (or pop3 service, which are read pop actions) for subject user charlie

(which belongs to the mail user role). Alike the previous example, the reaction in

this case will be limited to forbid port tcp/110 to host ms, but for user charlie only.

These two examples illustrate the fact that, in our approach, we can associate

threat contexts with general security rules. However, fine-grained instantiation of

the intrusion can be used to limit the reaction to those entities that are involved

in the attack (as an intruder or a victim). Notice that the presented listings could

be generalized by replacing constants by variables. For instance, in listing 6, it is

possible to replace the constant ws by a variable, and similarly for constants charlie

and ms in listing 7.

4.2 Atomic contexts

We recon that this approach is likely to greatly increase the number of contexts. To

facilitate context management, we consider that contexts may belong to three cate-

gories: operational, threat and minimal. Let C be a set of contexts. We consider a

set OC ⊆C of operational contexts. For the sake of simplicity, we consider that, in

the absence of characterized threat, that is in the absence of attack or intrusion, the

organizational policy is defined using a single nominal context. Thus, we assume

that nominal ∈ OC. However, in a more realistic setting, this policy may depend on

other contexts, for instance temporal contexts. Thus, we assume that OC may con-

tain additional sub-contexts, and that for example, working hours ∈OC. Additional

details about operational contexts may be found in [9]. Note that c ∈ OC is active

does not mean that there is no attack or intrusion, but that it is possible that there

is no attack or intrusion. Indeed, operational contexts do not provide any informa-

tion about threats. For example, nominal is always active, and working hours only

relies on time. We then consider a set TC ⊆C of threat contexts. A context c ∈ TC

is activated when a given threat is detected. This means that c ∈ TC is active nec-

essarily implies that there is an attack or an intrusion. It is associated to a set of

new security rules that apply to fix the threat. Finally, we consider the set MC ⊆C

of minimal contexts. Minimal contexts aim at defining high priority exceptions in

the policy, allowing to describe minimal security requirements that must apply even

when intrusions occur.
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Contexts are organized hierarchically so that, when a conflict occurs, security

rules associated with contexts higher in the hierarchy will override the ones associ-

ated with lower contexts. We assume that operational contexts are lower than threat

contexts which are in turn lower than minimal contexts. However, potential conflicts

may still remain between rules associated with contexts belonging to the same cat-

egory. In such cases, a partial order has to be defined between concerned rules, in

order to ensure conflict resolution at the policy evaluation level (see Section 5.3).

If c is a threat context, then subject s, action a and object o must be correctly

mapped onto information available from threats, including threat source, threat clas-

sification and threat target. So, in that case, the context definition associated with c

is a logical condition that matches the alert message generated by the intrusion de-

tection process.

4.3 Composed contexts

Providing the possibility to express fine-grained contexts is of major interest, in par-

ticular to characterize threats. However, managing specific atomic contexts would

rapidly become difficult since it would result in a huge number of definitions. We

therefore define a context algebra to provide a way to combine atomic contexts

through a boolean algebra. The algebra provides the following basic functions to

manipulate composed contexts:

Negation : n(c) ↔ context c is not active

Con junction : &(c1,c2) ↔ context c1 and context c2 are active

Dis junction : v(c1,c2) ↔ context c1 is active or context c2 is active

This algebra allows the expression of composed contexts based on the compo-

sition of atomic contexts, ensuring thus an easy way to define fine-grained security

rules. Contexts entering in the composition of composed contexts are simply named

composing contexts.

Managing security rules with composed contexts requires the ability to associate

a property to the composed context, in relation with the priorities of the composing

contexts. We now analyze the possible combinations, giving examples for a better

understanding of composed context priorities.

Definition 1 Since it is possible that there is no attack or intrusion in a negative

context, the negation of a context, whatever its category, is an operational context.

Property 1 The priority of a negative context is equal to the priority of an oper-

ational context. Consequently, the priority of a negative context is lower than the

priority of a threat context, and lower than the priority of a minimal context.
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Let us consider c1 ∈ OC, c2 ∈ TC and c3 ∈ MC. According to definition 1,

one can state that n(c1) ∈ OC, n(c2) ∈ OC and n(c3) ∈ OC. Now, according,

to property 1, one can state that n(c1), n(c2) and n(c3) have a priority of an

operational context. Thus, they have a lower priority than threat and minimal

contexts.

Ex. n(working hours), like working hours, is an operational context;

n(pop attack), negation of pop attack, is an operational context. Thus,

n(working hours) and n(pop attack) have both a lower priority than pop attack,

which is a threat context.

Definition 2 The conjunction of two contexts belonging to the same category be-

longs to this category.

Property 2 The priority of the conjunction of two contexts belonging to the same

category is the priority assigned to this category.

Let us consider c1 ∈ OC and c2 ∈ OC. According to definition 2, one can state

that &(c1,c2) ∈ OC. Now, according to property 2, one can state that &(c1,c2)
has the priority of an operational context.

Ex. &(working hours, in dmz) is the conjunction of a temporal (thus,

operational) and a spatial (thus, operational) context. Consequently,

&(working hours, in dmz) is an operational context.

Now, let us consider c3 ∈ TC and c4 ∈ TC. One can state that &(c3,c4) ∈ TC and

that its priority is higher than operational, but lower than minimal.

Ex. &(pop attack,syn f looding) is the conjunction of two threat contexts. Con-

sequently, &(pop attack,syn f looding) is a threat context.

Definition 3 The conjunction of two contexts belonging to different categories be-

longs to the category of the composing context having the highest priority.

Property 3 The priority of the conjunction of two contexts belonging to different

categories is the highest priority of the composing contexts.

Let us consider c1∈ TC and c2∈OC. According to definition 3, one can state that

&(c1,c2)∈ TC. Now, according to property 3, one can state that &(c1,c2) has the

priority of a threat context.

Ex. &(pop attack,working hours) is the conjunction of a threat context and an

operational (temporal) context. Since a threat context has a higher priority than an

operational context, &(pop attack,working hours) is a threat context, and thus it

has the priority of a threat context.

Dealing with the disjunction is not so trivial, in particular with two contexts be-

longing to different categories. Indeed, let us consider c1 ∈OC and c2 ∈ TC. Deter-

mining to which category v(c1,c2) belongs requires to consider which composing

context among c1 and c2 is activating v(c1,c2), since c1 and c2 do not have the same

priority. Indeed, if v(c1,c2) is active because c1 is active, this means that v(c1,c2)
is an operational context, like c1. On the contrary, if v(c1,c2) is active because c2
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is active, this means that v(c1,c2) is a threat context, like c2. Moreover, it is possi-

ble that v(c1,c2) is active because c1 and c2 are both active. In this case, v(c1,c2)
belongs to the category of the composing context having the highest priority.

In order to avoid the issue of active context determination, we make the choice

of automatically splitting the security rules defined with a disjunctive context into

a set of equivalent rules, each one being defined for each composing context of the

disjunction. For this purpose, we have simply to observe that a security rule defined

with a disjunctive context v(c1,c2) is logically equivalent to the conjunction of two

security rules respectively defined with context c1 and with context c2. Therefore,

we first convert contexts to Disjunctive Normal Form (DNF), that is as a disjunction

of conjunctions, and then write the set of equivalent rules.

Composed contexts are not necessarily composed of atomic contexts. Based on

the defined algebra, it is possible to envision not only the composition of atomic con-

texts, but also the composition of composed contexts, so that one can define rules

triggered by fine-grained contexts expressing accurately the security requirements.

For instance, one could express a prohibition for a role user to make the activity

read pop on the view mail server in the context:

&(v(remote access,&(internal access,n(working hours)), pop attack)),

that is either in a context of pop attack and remote access, or in a context of pop

attack and internal access on non-working hours.

4.4 Context activation

Activation of threat contexts raises two major points: (1) which information is avail-

able to characterize threats, and (2) what do we do with this information to charac-

terize threats at the policy level. We should insist on the fact that when we talk about

context activation, we deal in fact with the activation of complete hold facts, that is

context, but also organization, subject, action and object. This allows a full charac-

terization of the threat, that is not only which kind of threat (e.g. context pop threat),

but also which subject, action and object it deals with, and within which organiza-

tion.

4.4.1 Information about threat

IDMEF (Intrusion Detection Message Exchange Format [12]) messages generated

by intrusion detection sensors naturally carry threat information. Even outside in-

trusion detection, IDMEF provides an appropriate format for describing log events,
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as shown for example by the Prelude IDS framework3. Therefore, we use IDMEF

messages to select contexts and policy rules to activate. Among the IDMEF message

attributes, we particularly use:

CreateTime The CreateTime timestamp indicates the time at which the alert was

created and is mostly relevant for context activation.

Assessment The Assessment attribute carries information related to the risk of the

attacker’s actions.

Classification The Classification provides information about the mechanism of

the attack. This is important to relate the alert to the views and activities of the

Or-BAC policy rules, and to activate contexts.

Target The Target attribute carries information about the victim. This is important

to relate the alert to the views and activities of the Or-BAC policy rules, and to

activate contexts.

Source The Source attribute carries information about the attacker. This may be

relevant for roles in the Or-BAC policy rules if the attacker is an insider, and to

activate contexts.

We use the two first attributes to compute a context lifetime, as shown in table 2.

Attributes are also translated into contexts through the use of mapping functions, as

shown in Section 4.4.2.

4.4.2 Mapping alert information on hold predicates

Mapping alert information to context requires creating transformations from alert

content to instantiated triples (Sub ject,Action,Ob ject) by writing the appropriate

hold predicates. Unfortunately, the naive mapping from IDMEF.Source to Subject,

from IDMEF.Classification to Action, and from IDMEF.Target to Object, is far from

sufficient, and this for three reasons:

1. We need a mapping that has variable granularity, to take into account the differ-

ent scope of different attacks. For example, a distributed denial-of-service on all

areas of the network needs to be handled differently than a targeted brute-force

password-guessing attack.

2. Alert information is sometimes incomplete; sources can be inexistent, incom-

plete or wrong. Multiple classifications may provide inconsistent information,

such as conflicting attack references, may cover multiple attacks, or may not

be modeled in our system. We need to specify what happens when an alert is

incomplete.

3. We also need to specify complex responses mechanisms, that take into account

environmental information, expressing complex reaction scenarios. For exam-

ple, a complete response system may require moving from HTTP to HTTPS,

and hence opening and closing multiple network accesses, and starting and stop-

ping multiple services.
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Subject Action Object Context Lifetime

Createtime ntpstamp X

Source Node.name X
Node.Address.address X
Node.Address.netmask x
User.Userid.name X
Process.name x x
Service.name x x
Service.port x x

Target Node.name X
Node.Address.address X
Node.Address.netmask x
User.Userid.name x
Process.name X x x
Service.name X x x
Service.port X x x

Classification Reference.name x X

Assessment Impact.severity X
Impact.type X

Table 1 Mapping IDMEF classes on Or-BAC parameters

Table 1 lists the elements which should be taken into account to provide relevant

mappings. ’X’ means that the considered information is very likely to be found in

the IDMEF messages and thus to be used in the mappings. ’x’ means that the infor-

mation is less likely to be found, or that it is not yet used in the mappings. While

table 1 does not take into account all IDMEF attributes, we are are using the most

important ones with respect to the description of alert conditions. We are investigat-

ing the alerts produced by different systems to ensure that we are not leaving out

important parameters, particularly with respect to information that is stored in the

additional data blob.

The table reveals for instance that not only Classification.Reference can be con-

sidered to instantiate contexts, but also Target.Process and Target.Service. In fact,

some information may be redundant. For instance, both the reference CVE-2005-

1133 and the target service tcp/110 can be used to diagnose a pop attack context.

This kind of redundancy can help detecting conflicting attack references, and is also

used to determine contexts even in case of missing information. For example, an

alert with a missing reference but a target port could be managed considering only

the target port. However, one has to note that such information are not necessarily

rigorously equivalent, since one may look for more precise evidences. For exam-

ple, CVE-2005-1133 not only inform that we face a pop threat, but also that it is

a reconnaissance attack, which can be of interest in the mapping process. On the

opposite, target port tcp/110 only provides means to derive that we are coping with

pop threat.

This mapping also takes into account organization-related policies for response.

For example, mappings may always ignore IDMEF.Source information, concentrat-

ing on blocking traffic that reaches IDMEF.Target. They may prefer system-related

information (host names or network addresses) to user names, to ensure a global

3 http://www.prelude-ids.org/
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response to the threat, or prefer user names to deliver extremely targeted responses

at the user account level.

4.5 Context deactivation

Deactivating threat contexts is used to revocate countermeasures once threats are no

longer present. We currently manage static context lifetimes, which are computed

thanks to IDMEF alerts assessment attributes. Indeed, IDMEF alerts provide an

IDMEF.Assessment.Impact attribute with three sub-attributes, severity, completion

and type. If completion is set to failed, no context will be activated. Otherwise,

based on the impact severity, and type, we derive the duration of the context activity,

according to the matrix defined in table 2. This is a basic example that relies purely

on risk analysis done by the alert providers, but better analysis can be adapted using

finer threat analysis, as shown in section 7.1.

Impact severity info low medium high Comment
Impact type

admin 1 2 4 8 This is the most severe case.
dos 0 0 0 0 We are not currently handling DoS attacks.
file 0 1 2 3

recon 0 0 0 0 We are not currently handling scans, as they do not result
in compromise.

user 0 1 2 4
other 0 0 1 2

Table 2 Intrusive context lifetime according to IDMEF impact severity and type, in minutes

When an alert occurs, it is asserted for a certain duration. Thus, the corresponding

context is activated with the expiration date set according to the table. While this

alert remains stored in the system, the context remains active. When the lifetime

expires, the alert is removed from the database, and the context is deactivated, unless

another instance of the alert has been received in the meantime. Both asserts and

retracts trigger a re-evaluation of the security policy.

The values of table 2 have been defined through expert knowledge of the risks

incurred by each protocol. We currently use the same matrix for evaluating the risk

incurred by each access mechanism; the variation in risk associated with each indi-

vidual protocol is handled by the proper setting of the impact severity attribute.

4.6 Influence of Mapping on the Response Strategy

The mapping from alerts to contexts (or more generally to Or-BAC hold facts) also

influences the response strategy. Depending on the information available, one may
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provide a network-oriented response by retaining only network-based information

such as IP addresses and port numbers and discarding user-based information such

as user names, or conversely provide a user-oriented response. One may also com-

bine both for a very specific response. In a number of cases, network-oriented re-

sponse may be the only practical option, as network information is available in the

alerts and network security devices such as firewalls are capable of blocking the

undesired traffic.

Also, mapping influences the response to be either victim-centric or attacker-

centric. A victim-centric response aims at blocking traffic towards the attack target,

assuming that other attackers may attempt to exploit the same attack mechanisms.

An attacker-centric response aims at blocking traffic from the attack source, ensur-

ing that the attacker is prevented from accessing other servers that may offer the

same service or vulnerability. This is often the case in large environments – indeed,

our own case study shows three mail servers with identical characteristics; an attack

on one of them is equally dangerous for the two others, even though the attacker

may not have yet stricken.

Finally, one may degrade the mapping, for example by authorizing a mapping

from IP addresses to subnet masks only. Hence, the response would apply to all

machines in the subnet, instead of the single victim machine.

5 The Threat Response System

5.1 System Architecture

The architecture of the threat response system is presented in figure 6. Software or

hardware modules are depicted by circles and messages and configuration informa-

tion associated with our components by diamonds. We assume that any organization

will deploy sensors and a security information management framework, from which

we will collect alert information. This is depicted by the sensor block. The policy

changes will be applied to PEPs, for example mail servers, firewalls or intrusion

detection systems. It is therefore likely that some PEPs will also act as sensors. The

function of our software modules is described further in table 3.

5.2 Alert Correlation Engine (ACE)

Generally, information produced by sensors cannot be considered on their own. In-

deed, this information actually comes from many sources (sensors), and with dif-

ferent formats (ex: a Snort alert, a Netfilter firewall log, etc.). Moreover, there is a

strong need for alerts volume reduction and semantics improvement. Alert corre-

lation aims at realizing this task, thus permitting false positives reduction and pro-
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Fig. 5 Threat response system architecture

Module Input Output Configuration Function

ACE IDMEF
messages

IDMEF
messages

External security refer-
ence databases

Verify and update information in ID-
MEF messages for threat assessment.

PIE IDMEF
messages

Or-BAC
concrete
rules

Or-BAC policy and con-
text definitions

Activate threat contexts. Extract a new
security policy from the active con-
texts.

PDP Or-BAC
concrete
rules

Config
scripts

Policy to script transla-
tion rules

Segment the policy according to PEP
realms and capabilities, and trans-
late the policy rules to PEP-specific
scripted commands.

PEP Config
scripts

IDMEF
messages

Apply the configuration script that im-
plements the security policy.

Table 3 Function of the software modules

ducing meta-alerts offering a better semantics and severity levels for more efficient

analysis. This is mainly done by merging redundant information and similarities in

order to obtain global alerts with a fusion process [4]. We define an ACE as an en-

tity receiving as input every possible event produced by sensors and giving as output

high-level IDMEF-compliant alerts (meta-alerts).

Note that the exact definition of this module is considered out of the scope of

this paper, since we consider the existence of valuable works on the subject [11, 19,

4, 20] and of a SIM commercial market as a proof of feasibility. Our current ACE

prototype only verifies and modifies impact information in the IDMEF message,

and validate sources and targets with respect to contexts.
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5.3 Policy Instantiation Engine (PIE)

The security policy description corresponds to a set of Or-BAC rules. The possi-

bility to express contextual policies offered by Or-BAC is used in order to trigger

rules considering high-level and fine-grained information. Thus, a policy instantia-

tion engine (PIE) has two major functions: (1) activate contexts (through Or-BAC

hold facts) which (2) trigger re-evaluation of the security policy (through activation

of abstract Or-BAC rules). Intrusive contexts activation is addressed in Section 4.4.

For operational contexts, such as temporal ones, one can refer to [9] for further

information. Note that the PIE also deals with context deactivation, according to

Section 4.5. Generic policy rules triggering is explained in Section 3, and examples

are given in Section 4.1.

Note that the PIE manages conflict resolution at the policy evaluation level to

produce a coherent set of policy instances (concrete Or-BAC rules) to deploy. Con-

flict resolution is managed at the abstract level, by deciding which rule takes prece-

dence when two or more rules present intersections of roles, activities, views and/or

contexts. On this purpose, we consider Or-BAC abstract entities inheritances and

priorities depending on contexts categories to define a partial order relationship be-

tween conflicting rules, which is sufficient to ensure the proper evaluation of the

security policy, as shown in [10].

5.4 Policy Decision Point (PDP)

Policies instantiated in response to threat contexts are transmitted to one or more

PDP(s). A PDP is in charge of local policy decisions. Whenever it receives a new

policy instance, that is an Or-BAC concrete rule (permission or prohibition), a PDP

has to map this information onto concrete actions to be performed on PEPs to en-

force the new policy. A PDP thus have to be aware of its PEPs abilities, so that it can

translate first the rules into generic configurations, considering the kind of PEP (e.g.

a firewall), and then the generic configurations into specific configurations, consid-

ering the implementation of the PEP (e.g. a “Netfilter” firewall) [7]. Note that part

of the decisional capability of the PDP relies on the fact that a given Or-BAC con-

crete policy rule may provide different actions on the PEPs. For instance, depending

on the architecture of the information system, reconfiguring access to mail user ac-

counts may be realized on the service itself, (e.g. pop3 service native configuration

files) in the case of dedicated services, or at the infrastructure level (e.g. reconfigu-

ration of Active Directory) in the case of federated services environment. One may

also imagine advanced deployment scenarios, taking into account network or appli-

cation sessions continuity. For example, an advanced scenario could be to first alert

users on an imminent service disruption, but let them a definite time to terminate

their immediate action.
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5.5 Policy Enforcement Point (PEP)

PEPs receive new policies (or policy elements), which have been translated by the

PDP [7]. Expressing a new policy may have implications on multiple PEPs. For ex-

ample, it can involve both a server (stopping a service) and a firewall (blocking a

port). Each PEP dealing with a policy instance is sent a configuration script, con-

sidering its type (ex: firewall), but also its implementation (ex: Netfilter). Note that

a PEP can also be considered a sensor, which possesses specific functionalities of

policy enforcement. This characteristic can provide information allowing validation

of new policies effective application.

6 From alerts to new policies

We present here the workflow allowing the mapping from alerts to new policy in-

stances. The PIE is divided into two subparts allowing (1) to map alerts reported as

IDMEF messages into Or-BAC hold facts characterizing threats and allowing ade-

quate countermeasures, and (2) to derive new policy instances thanks to hold facts

and to the abstract policy definition. Figure 6 presents a global view of these two

PIE functions. Mapping threats to hold facts is managed through the Threat Char-

acterization Engine (TCE), whereas concrete policy instantiation is realized thanks

to the Policy Core Engine (PCE). Note that conflict resolution is managed at PCE

level since it is ensured at the policy evaluation step.

Figure 6 also presents in details the components of the Threat Characterization

Engine. Threat characterization does not actually consist in a trivial and static map-

ping, since (1) IDMEF messages may contain various information which can be

translated in different Or-BAC triples (subject, action, object), (2) some information

may lack in IDMEF messages, and (3) generated hold facts must be relevant to cur-

rent threat in order to provide the best adequate response. On this purpose, the TCE

process is divided into three steps: (1) syntactic mapping, (2) enrichment, and (3)

strategy application.

6.1 Syntactic mapping

The first stage consists in realizing a quite trivial syntactic mapping, that is extract-

ing as many triples (sub ject,action,ob ject) as possible from a given IDMEF mes-

sage, to ensure that all subjects, actions and objects known to be participating in the

attack process are included in the response. The obtained information is called raw

Or-BAC instances, since they are not usable to respond to threat. Such mappings

are statically defined, a sub ject being for instance the IP address of the source host

given by the IDMEF message. An example of an action is the target port (service)

and an example of an ob ject is the DNS name of the target.
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6.2 Enrichment

Once syntactic mapping has been realized, we face two issues related to the fact that

alerts are sometimes incomplete, or that some optional parameters are not necessar-

ily defined. Thus, two enrichment steps are provided: (1) enrich subjects, actions and

objects which are only partially instantiated, and (2) find similar actions to instanti-

ated ones, but at different levels (e.g. network and service levels, as aforementioned

in Section 5.4).

1. Subjects, actions and objects are in fact data structures sometimes regrouping

equivalent information. For instance, IP addresses and DNS names are consid-

ered equivalent since they qualify the same subject. Another example is the

equivalence between a service port (tcp/110) and a service name (pop3). Con-

sequently, and because we may sometimes find in IDMEF messages only part

of these information, a first enrichment step consists in finding all equivalences

and thus provide exhaustive subjects, actions and objects.
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2. Actions may present similar instances, but at different levels. In particular, we

distinguish network actions, such as tcp/110, from service actions, such as

popd. These information both aim at responding to the pop3 service, but the

former is probably to result in a firewall reconfiguration (network response, for

instance blocking tcp/110 port) and the latter may trigger a server reconfigu-

ration or stopping (service response, for instance stopping /etc/popd daemon).

Since we may find only part of these information in the alerts, enrichment also

consists in trying to instantiate all the similar instances.

6.3 Strategy application

At this stage, the system has provided enriched Or-BAC instances, that is all possible

and exhaustive (sub ject,action,ob ject) triples characterizing the threat.

Strategy application first consists in triggering the context. Although it does not

appear on the figure, this process needs IDMEF information related to context trig-

gering (for instance, Classification.Reference).

Then, considering all available information (IDMEF message and enriched Or-

BAC instances), and optional information related to user-defined strategy settings,

facts in order to respond to the considered threat. This means that subject, action,

and object may be altered considering desired strategy, to tune the response scale

(e.g. extend it to a group of users, a sub-network, etc.).

Finally, given the obtained hold fact(s), the PIE is able to find the associated

security rule(s), which allow(s) then to derive concrete authorizations as explained

in listing 1. Concrete examples of these processes are given in the case study of

section 7.

7 Case Study: e-mail Server

We now come back to the case study. As shown in section 3.4, users are able to

access their mailboxes through several communication ptotocols. However, each

protocol is vulnerable to attacks, either because of software vulnerabilities or in-

herent design. Our response system aims at protecting them by disabling usage of

the particular component under attack. IDS sensors and other logging systems will

detect malicious attempts. When a malicious attempt is detected, we will react by

blocking access to the mechanisms (servers, services or mailboxes) under attack.

We use SWI-Prolog to implement first-order logic based reasoning required by

Or-BAC.

the strategy application process deals with instantiation of relevant hold(org,s,a,o,c)
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7.1 Threats related to the use case

As shown in section 4, and particularly 4.1, the first requirement in our threat re-

sponse system is to understand the threats that are relevant to the environment of

the use case, and derive the appropriate contexts. This means that the security offi-

cer needs to carry out a risk analysis on this environment, as already mentioned in

section 2.3

We have carried out a software vulnerability search using the National Vulnera-

bility Database4 (NVD) using the keywords “exchange” and “pop3”. A partial result

of this search is illustrated in table 4. In the table, column 1 gives the CVE reference

of the vulnerability. Column 2 evaluates the relevance of this vulnerability to the

use case ; the vulnerability is highly relevant if the vulnerable software is clearly

present in the use case, low if the vulnerability is clearly absent from the use case,

and medium if we could not determine it clearly. Column 3 contains the Common

Vulnerability Scoring System5 (CVSS) score for the vulnerability, computed from

the CVSS vector. The CVSS vector itself is partially explicited in the impact col-

umn, where the (C) indicates complete impact and the (P) indicates partial impact of

the vulnerability on either availability, confidentiality or integrity. Finally, columns

5, 6 and 7 analyze the model abstract or concrete entities that are impacted by the

vulnerability.

The table contains only cursory information about each vulnerability. The reader

is refered to the NVD for a detailed description of the vulnerabilities associated

with each CVE reference, and in particular a textual description and the complete

CVSS vector. Table 4 only shows partial results from our search, and the search term

themselves are not exhaustive ; a thorough examination should include all installed

software (we only included 2). It should take into account the detection capability,

i.e. the fact that an attempt to use the vulnerability will result in an alert provided

by one of the sensors ; if an attack using one of these vulnerabilities cannot be

detected, then no response can be included in the threat response system. Also, in

the specific case of software vulnerabilities, patching applications will change the

relevance of the vulnerability for the threat response system, and thus may change

the associated response. We do consider though that there will be some time between

vulnerability discovery and patching where such response will be important, and

that non-software vulnerabilities (e.g. password guessing) are relevant to the threat

response system. The proposed analysis merely illustrates the technology, but must

of course be updated when new vulnerabilities are discovered.

We derive the hold facts of the case study from table 4. At least one hold fact is

created for each CVE reference. The activity, view and role columns are analyzed

to determine where this information is present in the IDMEF alert, under which

keyword and form. The reader can refer to the example of CVE-1133 in section

4.1.2 for an example of a definition of a hold fact. Finally, the impact, relevance and

4 nvd.nist.gov
5 http://www.first.org/cvss/cvss-guide.html
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CVE Reference Relevance CVSS Impact Activity View Role

Severity (Action) (Object) (Subject)

Passwd guessing High - User access Access any any

CVE-2006-7040 Low 3,3 DoS TOP POP3 any

CVE-2006-6940 Low 10 Admin access, Write, OWA, any

Confidentiality (C), Read, POP3

Integrity (C), Transfer

Availability (C),

DoS

CVE-2006-1193 High 1,9 Unauthorized modification Read OWA Mail user

CVE-2006-0027 High 7 User access, Write, Exchange any

Confidentiality (P), Transfer

Integrity (P),

Availability (P),

DoS

CVE-2006-0002 High 7 User access, Write, Exchange any

Confidentiality (P), Transfer

Integrity (P), Read any Outlook

Availability (P),

DoS

CVE-2005-1987 High 7 User access, Write, Exchange any

Confidentiality (P), Transfer

Integrity (P),

Availability (P),

DoS

CVE-2005-1133 Low 3,3 Allows unauthorized disclosure of information USER POP3 any

CVE-2005-0738 High 3,3 DoS Read Exchange Mail user

CVE-2005-0563 High 3,3 Allows unauthorized modification Read OWA any

CVE-2005-0560 High 7 Unauthorized access, Write Exchange any

Confidentiality (P), Transfer

Integrity (P),

Availability (P),

DoS

CVE-2005-0420 High 7 Unauthorized access, Access OWA any

Confidentiality (P),

Integrity (P),

Availability (P),

DoS

CVE-2005-0044 High 7 User access, Write, Exchange any

Confidentiality (P), Transfer

Integrity (P), Read any any

Availability (P),

DoS

CVE-2004-0840 High 10 Admin access, Write, Exchange any

Confidentiality (C), Transfer

Integrity (C),

Availability (C),

DoS

CVE-2004-0203 High 10 Unauthorized access, Read OWA any

Confidentiality (P),

Integrity (P),

Availability (P),

DoS

CVE-2003-0904 High 5,6 Unauthorized access, Access OWA any

Confidentiality (P),

Integrity (P),

Availability (P),

DoS

CVE-2003-0714 High 8 Unauthorized access, Write Exchange any

Confidentiality (P), Transfer

Integrity (P),

Availability (P),

DoS

CVE-2003-0712 High 7 User access, Read OWA any

Confidentiality (P),

Integrity (P),

Availability (P),

DoS

CVE-2003-0007 High 3,3 Allows unauthorized disclosure of information Write any Outlook

CVE-2002-1876 High 2,3 DoS Read Exchange any

CVE-1999-0116 Medium 3,3 DoS any any any

Table 4 Example of threats considered relevant for the use case

CVSS score are used to adapt the context lifetime values from the defaults sown in

table 2.
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7.2 Threat analysis

Table 4 lists the (role,activity,view) or (sub ject,action,ob ject) triples potentially

impacted by the vulnerability. This definition corresponds to our understanding of

the information available in the description of each vulnerability. We use the any

keyword to denote that any entity can participate in the vulnerability (the value of

this field is not important in exploiting the vulnerability directly), italics to denote

concrete entities, and plaintext to denote abstract entities. In the table, we observe

the following:

Prevalence of any for roles and subjects There are only three exceptions to this in

table 4. There are two explanations to this phenomenon:

1. the query term were oriented towards server vulnerabilities. A search for

client-side vulnerabilities would likely yield many results where the role

would be a specific server side software. Searching the NVD for “Mi-

crosoft Outlook” yields 102 responses, 244 for “Mozilla Firefox”, and 124

for “Mozilla Thunderbird”. While these are the immediate query terms, we

could also imagine searching for Microsoft Office vulnerabilities (as Out-

look is part of the Office suite) or for specific components such as images,

OLE or COM. Limiting ourselves to server-side vulnerabilities helps in en-

suring that we will indeed have signature and thus alerts that represent usage

of these vulnerabilities. Furthermore, e-mail servers are also a gateway to the

outside world (as we will see later in this section), and thus carry more risk.

2. the faulty component has been identified, but the table does not take into

account natural dependencies. For example, all the table entries listing OWA

as the object should list firefox as the subject, since it is the email client (web

browser) used to connect to OWA. Taking these dependencies into account

in the table is complicated because we then need to determine whether the

client software is impacted by the flaw and how ; for all the cross-site script-

ing vulnerabilities, it is unclear to us whether firefox would effectively be

vulnerable and whether the user making the final decision would interact in

a dangerous way with the server. We consider that this information should

not be part of the decision process, because it is not reliable.

Prevalence of abstract entities as activities Many vulnerability descriptions do not

refer to a specific action from the user. We have only two exceptions in the table,

TOP and USER, which refer to specific commands of the POP3 protocol. In the

other cases, we can identify a general activity that the user is performing, but not

the exact action ; this would probably be possible if we analyzed attack code,

but it is unlikely that a security administrator will have the time to do this from

a security report highlighting security risks. He will have to base his decision on

the vulnerability description, and we have done so as well.

Prevalence of concrete entities as objects As already noted, our search terms were

server-oriented, hence it is quite natural that we obtain concrete software vulner-

abilities in this column, attached to concrete software objects. As views and roles
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are symetric, the same queries we mentioned for roles would yield any for the rel-

evant view. The exceptions appear in only two cases, CVE-2006-0002 and CVE-

2005-0044. CVE-2006-0002 impacts separately both exchange and outlook, as

noted in the vulnerability description ; however, in the use case, outlook will be

the client that connects to exchange, so the two lines are really identical.

Apparition of a “Transfer” activity Many vulnerability descriptions indicate that

the vulnerability can be exploited by sending a message from a remote location.

The Write activity does not fully reflect this, as mail servers also exchange mail

with other outside servers. In our use case, we had not originally taken this di-

mension into account, and considered a closed email system. A better analysis

of table 4 has led to the creation of the Transfer activity. With respect to server-

side threats, Write and Transfer activities are very close ; client-side threats (as

shown for example in CVE-2003-0007 do imply that the dialog is between a reg-

istered user and an internal server, and do not implicate the Transfer activity. This

“Transfer” activity would enable us to move from a closed mail system to a more

realistic open one, although this is left for future work.

Specific handling of low level threats It seems likely that transport-level threats

have a much broader impact than the ones at the higher layers. The only example

of low level threat in the table, synflood (CVE-1999-0116), can be carried out

regardless of the role, activity or view, provided that all roles can inject traffic

at the transport layer. We believe that all threats related to traffic injection (land,

ping-of-death, ...) are likely to be difficult to include in the model unless spe-

cific network-level access-control policies are in place (such as authentication of

DHCP requests or network level policy enforcement such as DHCP switching as

practiced by ungoliant6.

We have also included a line about information level threats with the password

guessing activity. This attack can occur against the Access activity, but can occur

through any of the mail clients against any of the mail servers. This is likely due to

the synchronization mechanism that replicate the same user/password information

throughout all channels.

7.3 Revised description of the Policy Components

As explained in section 3, we use contexts to formulate additional policies for threat

response. We will derive our threat contexts in a tree fashion, according to the in-

formation provided in table 4. The key issue is to create the appropriate contexts

and the associated hold facts. As shown in figure 7, we re-use the nominal and

the my mailbox contexts introduced in section 3.5.3. We introduce the minimal and

minimal mail contexts to support the minimal security requirements introduced in

section 3. We also introduce the threat contexts, that correspond to the threats iden-

tified in figure 7.

6 http://ungoliant.sourceforge.net/
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Fig. 7 Model of threat contexts

In this case, we separate between network-level threats (where enforcement will

occur through filtering devices on the network only), and application (mail)-level

threats, where we have more options for enforcement. We further refine mail threats

into server-side threats and client-side threats. As a result of our analysis, some of

the identified threats are relevant to several contexts.

7.4 Definition of the Security Policy

Listing 8 Email access control policy

s r ( perm , corp , m a i l u s e r , r e a d e x c h a n g e , m a i l s e r v e r ,&( min ima l ma i l , w o r k i n g h o u r s ) ) .

s r ( p roh ib , corp , p o p u s e r , r ead pop , m a i l s e r v e r , p o p a t t a c k ) .

s r ( p roh ib , corp , imap use r , r ead imap , m a i l s e r v e r , i m a p a t t a c k ) .

s r ( p roh ib , corp , o u t l o o k u s e r , r e a d e x c h a n g e , m a i l s e r v e r , e x c h a n g e a t t a c k ) .

s r ( perm , corp , m a i l u s e r , r e a d m a i l , m a i l s e r v e r , nomina l ) .

Following the definitions of Section 3, we define the security policy as shown in

listing 8. In this policy, we consider that it should always exist a way to read mail

during working hours, but not necessarily on non-working hours. Indeed, although

availability is of crucial interest during working hours, it may not be so important

during non-working hours, and the priority could be higher for confidentiality and

integrity. A solution to this availability issue is to define an exception with a rule

permitting for example exchange via outlook access with a high level priority (mini-

mal context), as shown in the first rule of listing 8. Thus, we avoid the case for which

the system would close all possible paths to mail, which would lead to self-inflicted

denial-of-service.
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Listing 9 Email access control policy

hold ( corp , S u b j e c t , Act ion , Objec t , C o n t e x t ) :−
a l e r t ( CreateTime , Source , Ta rge t , C l a s s i f i c a t i o n ) ,

r e f e r e n c e ( C l a s s i f i c a t i o n , R e f e r e n c e ) ,

t r i g g e r ( Re fe rence , C o n t e x t ) ,

map syn tax ( Source , Ta rge t , RawSubject , RawAction , RawObject ) ,

map enr i chmen t ( RawSubject , RawAction , RawObject , E n r S u b j e c t , EnrAct ion , E n r O b j e c t ) ,

m a p s t r a t e g y ( E n r S u b j e c t , EnrAct ion , EnrObjec t , S u b j e c t , Act ion , O b j e c t ) .

ho ld ( corp , S u b j e c t , , Ob jec t , m i n i m a l m a i l ) :−
ho ld ( corp , S u b j e c t , , Ob jec t , p o p a t t a c k ) ,

ho ld ( corp , S u b j e c t , , Ob jec t , i m a p a t t a c k ) ,

ho ld ( corp , S u b j e c t , , Ob jec t , e x c h a n g e a t t a c k ) .

ho ld ( corp , , , , w o r k i n g h o u r s ) :−
g l o b a l c l o c k ( DayClock , TimeClock ) ,

TimeClock >= ’ 0 7 : 0 0 : 0 0 ’ ,

TimeClock < ’ 2 0 : 0 0 : 0 0 ’ ,

DayClock != ’ s a t u r d a y ’ ,

DayClock != ’ sunday ’ .

ho ld ( corp , , , , nomina l ) .

This security policy then specifies that any attack against one of the email access

mechanisms invalidates the access mechanism being attacked, and that by default,

mail users have access to all mechanisms to read mail. This simple expression is

obtained by taking into account that each rule also applies to children in the graphs.

Note that this concise expression is generic and adaptable to multiple physical

architectures. If we had multiple mail servers spread per location instead of a cen-

tralized mail server farm, we would express the same policy. However, we would

change the deployment strategy at the PDP level and have a different list of PEPs.

Once we have modeled the environment and the security policy, we need to ex-

press the hold predicates as shown in listing 9. The working hours context is mod-

eled in a straightforward way, as is the nominal context. We define the minimal mail

context as a sub-context of the minimal context. The context minimal mail is active

when all three email access mechanisms are attacked. Hence, during working hours,

when the &(minimal mail,working hours) context is active, the policy expresses

that the exchange access is re-opened ensuring continued availability of email infor-

mation.

Note that we do not necessarily consider only availability in such a case. Indeed,

confidentiality and integrity guarantees can also be provided by defining additional

constraints. For instance, one could define security rules ensuring that resources are

accessed only via a secured protocol. For example, one may choose to switch from

pop to pops in the case of pop3, or from imap to imaps in the case of imap, etc.

Moreover, it is possible to elevate authentication requirements. For example, users

could be forced to use certificates or biometric means to authenticate. Thus, avail-

ability requirement is still fulfilled, but provided that additional conditions related

to confidentiality and integrity are ensured.
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7.5 The Mapping Predicates

The core of the hold predicate related to threats (the first one in listing 9) is rep-

resented by the four mapping functions, trigger, map syntax, map enrichment and

map strategy. The trigger function aims at mapping an alert reference on its corre-

sponding context, as explained in Section 4.1. References are thus grouped consider-

ing attack classes, which represent threat contexts. The map syntax, map enrichment

and map strategy functions are implemented with respect to requirements explained

in Section 6. An example of mapping in this case study is given by listing 10.

Listing 10 Possible mapping in the case study

s u b j e c t = IDMEF . T a r g e t . User . U s e r i d . name

a c t i o n = IDMEF . C l a s s i f i c a t i o n . R e f e r e n c e . name or IDMEF . T a r g e t . S e r v i c e . { name , p o r t }
o b j e c t = IDMEF . T a r g e t . Node .{ name , Address }

Note that concerning response strategy, we have chosen here to protect user

accounts rather than eliminate attackers. It is thus different from the example

given in Section 4.1. For example, if Charlie performs a brute-force attack on Al-

ice’s email password, the Source.User.Userid.name will be charlie and the Tar-

get.User.Userid.name will be alice. According to our mapping, we will block ac-

cess to Alice’s account, not from Charlie’s account. This stems from the fact that

Source.User is rarely instantiated in our alerts, and is often unreliable. Another so-

lution may consist in blocking the source, but at the host level rather than at the

user level. However, although this may apply to the case of an internal attack, as

explained in Section 4.1, where the actual attacker is reported by the alert, it is not

clear whether it would be efficient for an external attack. Indeed, the proxy is seen as

the source of the attack from the internal network, and this may lead to the blocking

of the proxy, instead of the real source. Such a response would mean that all exter-

nal hosts are blocked instead of attacker only. Moreover, another issue deals with

spoofing, that is react on the source is impossible when the alert reports a spoofed

source, since it is not the actual attacker. Such considerations are typical informa-

tion entering into the process of response strategy. The exact implementation of the

mappings predicates is still an area of research; while our case study shows that it

is possible to define such mappings, the evaluation of what constitutes the “best”

mapping remains to be done.

8 Issues with the Approach

While this approach is still under development, the current work has brought up a

number of interesting issues, especially concerning service continuity and dynam-

icity of policy changes.
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Service Continuity

The first question raised by this approach is service continuity. If connectivity is cut

at the network level, clients receive error messages but are not informed automat-

ically about other opportunities to access the information they need. We therefore

need to interact with clients to inform them that they should change their access

mechanism.

Server-side-only automated redirection is possible only in a limited number of

protocols. For example, in a web environment where clients have the opportunity

to use both HTTP and HTTPS, we would be able to automatically redirect clients

from HTTP to HTTPS by changing the URLs embedded in the web pages returned

by the server. When the client clicks on a particular link (assuming that the security

policy has not changed in the meantime), he is redirected to the appropriate service.

Unfortunately, this opportunity does not seem to exist for email protocols; therefore,

we are studying the possibility to configure multiple email accounts on a mail client,

and change configurations when needed.

Dynamicity of Policy Changes

System and network administrators are quite conservative when it comes to policy

changes. Therefore, we need to discourage rapid changes in policies and oscillations

between policies, that would perturb the clients and force them to change their ac-

cess mechanisms several times during their sessions. Experiments with the matrix

shown in table 2 should clarify this problem and in particular allow us to verify if the

proposed timings converge towards the working hours policy or leave enough room

for multiple simultaneous access methods. Implementing dynamic context deactiva-

tion should also prevent from such issues. Indeed, defining static context lifetimes

is a first step towards context deactivation, but it requires a strong expertise, and it

may not provide the best results, since the threat could be shorter than the resulting

countermeasure lifetime, or on the contrary, longer than the resulting countermea-

sure. Future work shall in part consist in improving the context deactivation process,

by making use of information reported by policy enforcement points, acting as sen-

sors, in order to dynamically characterize the state of a considered threat.

9 Conclusion

In this paper, we have proposed a systematic approach to threat response. The ap-

proach builds upon Or-BAC, an advanced security policy formalism, to define a

contextual security policy that will be applied to the information system. This en-

ables the definition of multiple equilibrium points between security, performance,

convenience and compliance objectives. These equilibrium points are expressed as

contexts or context combinations of the security policy. The Or-BAC framework
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includes tools for formally verifying the security policy and for translating the for-

mal security policy into practical configuration scripts that can be applied to policy

enforcement points to change the security policy. The expression of the security

policy allows the definition of simple responses to each threat, a global and efficient

response in the face of multiple threats being computed during the instantiation of

the security policy.

The threat contexts vary according to alerts collected by various sensors. These

alerts received as IDMEF messages are mapped onto policy subjects, actions and

objects and are used to activate specific contexts. The mapping from IDMEF mes-

sages to policy entities is complex and has implications on the choice of response

that will be available to handle the threat. When a particular context is activated, the

new set of policy rules is validated and translated to the enforcement points. These

mechanisms have been implemented and validated on a case study environment.

The organization-based approach shows encouraging results and we are confident

that deployment at a larger scale will be possible.

Future work includes modeling service continuity, ensuring that clients get con-

tinuous access to information seamlessly, defining and evaluating mapping functions

to formalize the impact these mapping functions have on threat response choices,

and evaluating the performances of the prototype approach with respect to perfor-

mance and efficiency in threat response.
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Intrusion Detection and Reaction: an Integrated

Approach to Network Security

M. Esposito, C. Mazzariello, F. Oliviero, L. Peluso, S. P. Romano, and C. Sansone

Abstract Denial of Service (DoS) attacks represent, in todays Internet, one of the

most serious security threats. A session is under a DoS attack if it cannot achieve its

intended throughput due to the misbehavior of other sessions. Many research stud-

ies have dealt with DoS, proposing models and/or architectures mostly based on

an attack prevention approach. Prevention techniques lead to different models, each

suitable for a specific type of misbehavior, but they do not guarantee the protection

of a system from a more general DoS attack.

In this work we analyze the fundamental requirements to be satisfied in order

to protect hosts and routers from any form of Distributed DoS (DDoS). Then we

propose a framework which satisfies most of the identified requirements. It ap-

propriately combines Intrusion Detection and Reaction techniques and comprises

a number of components actively cooperating in order to effectively react to a wide

range of attacks. Functional to our approach is a network signaling protocol, named

Active Security Protocol,which allows a set of active routers to interact in order to

isolate the sources of a DDoS attack even in the case of address spoofing.

As to Intrusion Detection, which plays a major role in the framework, we present

a reference model for a real-time network Intrusion Detection System (IDS) based

on Pattern Recognition techniques. First, we describe how network traffic can be ef-

fectively represented through the definition of an appropriate set of traffic features.

Issues arising when building-up a database for training an IDS will be highlighted,

by also taking into account anonymization requirements. The feasibility of the pro-

posed approach will be experimentally demonstrated in terms of both packet loss

and detection capability in the presence of real traffic data. Finally, a distributed

version of the proposed IDS will be presented.
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1 Introduction

The term Denial of Service (DoS) indicates an attack explicitly designed to prevent

a system from performing its regular operations, or at least to produce a degradation

in its performance. A more formal definition of the term has been proposed by the

CERT/CC (Computer Emergency Response Team/Coordination Center) [1]: “inten-

tional degradation or blocking of computer or network resources”. DoS attacks on

the Internet can be directed toward two types of targets: networks and hosts. At-

tacks against networks aim at collapsing them; this is achieved either through data-

flooding techniques or by corrupting routing tables inside routers. On the other hand,

attacks against hosts aim at preventing authorized users from accessing a server, by

directly attacking it and making it unable to provide one or more services [2]. A fur-

ther attack classification is based on the involved hosts number. Two attack classes

can be identified: indexsingle-source attacks single-source attacks, launched by a

single source, which most likely is a previously compromised host, with enough

available resources (especially in terms of bandwidth); distributed attacks, simulta-

neously originated from many systems, against one or more targets.

In this paper we present a general framework specifically conceived with the

aim of mitigating as far as possible the effects of a DDoS attack. Such a frame-

work exploits both detection and reaction techniques in order to increase the level

of availability of network resources, in the presence of a variable number of attack

sources spread throughout the network. More precisely, the architecture we propose

is composed of two major building blocks: (i) an Intrusion Detection module, in

charge of detecting in real-time the occurrence of a potential attack; (ii) an Intrusion

Reaction module, enabling the orchestrated operation of network routers with the

aim of tracing back (i.e. determining the sequence of routers crossed by the attack

traffic) detected attacks. Intrusions identified by the detection module thus represent

the events triggering the subsequent reaction phase, during which all of the network

routers cooperate in order to go upstream as close as possible to the attack sources

and put into place the most appropriate countermeasures (e.g. filter out malicious

traffic entering the network).

The paper is organized in 6 sections. Section 2 illustrates some background on

both intrusion detection and traceback techniques, by reporting related research ac-

tivities ongoing in the international scientific community. In the light of the provided

background, Section 3 describes our framework, which combines detection and re-

action approaches to perform the envisaged defense activities. Section 4 provides

some more insights about issues and proposed solutions concerning the detection

phase. In such section, we also address some important side issues regarding the

need for ensuring privacy when dealing with network data. Section 5 explains how

we designed and implemented an effective solution for cooperative reaction to de-

tected attacks. Finally, Section 6 provides some concluding remarks, together with

information about our future work.
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2 Related Work

Two are the key factors to be taken into account when designing a system capable

of reacting to DoS attacks: Intrusion Detection and Traceback. In the following of

this section, we discuss related work in both areas.

2.1 Intrusion Detection Systems

On the basis of the information sources analyzed to detect an intrusive activity, the

Intrusion Detection Systems (IDS) are typically grouped into two main categories:

Network-based Intrusion Detection Systems (N-IDS) [3] and Host-based Intrusion

Detection Systems (H-IDS) [4]. N-IDS analyze packets captured directly from the

network. By setting network cards in promiscuous mode, an IDS can monitor traffic

in order to protect all of the hosts connected to a specified network segment. On the

other hand, H-IDS focus on a single host’s activity: the system protects such a host

by directly analyzing the audit trails or system logs produced by the host’s operating

system. In addition, in [5] two other categories are introduced: Application-based

Intrusion Detection Systems (A-IDS) and Stack based Intrusion Detection Systems

(S-IDS). Indeed, A-IDS are a subset of H-IDS. In fact, application audit logs are the

source of information for these systems. Finally, S-IDS work directly on the TCP/IP

stack, by monitoring packets during their transport through OSI layers. Note that

they monitor not only incoming traffic, but also outgoing traffic. In the following

we will concentrate our attention on N-IDS, since the other categories are outside

the scope of the present paper.

Depending on the detection technique employed, IDS can be roughly classified

as belonging to two main groups as well [6]. The first one, that exploits signatures

of known attacks for detecting when an attack occurs, is known as misuse, or sig-

nature, detection based. IDS’s that fall in this category are based on a model of

all the possible misuses of the network resources. The completeness requirement is

actually their major limit [7]; this notwithstanding in the literature there are some

very recent proposals that follow this approach [8, 9, 10]. A dual approach tries to

characterize the normal usage of the resources under monitoring. An intrusion is

then suspected when a significant difference from the resource’s normal usage is re-

vealed. IDS’s following this approach, known as anomaly detection based, seem to

be more promising because of their potential ability to detect unknown intrusions.

However, in this case, a major problem is the need of acquiring a model of the

normal use general enough to allow authorized users to work without raising false

alarms, but specific enough to recognize unauthorized usage [11, 12].

The difficulty of acquiring a purely normal set of data has given rise, more

recently, to a third category of detection techniques, based on the unsupervised

anomaly detection approach [13]. In unsupervised anomaly detection, there is a set

of data for which neither normal nor anomalous elements are known. Unsupervised

anomaly detection can be seen as a variant of the classical outlier detection prob-
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lem [14]. The main advantage is that unsupervised anomaly detection algorithms

can be performed over an unlabeled set of data that can be obtained by simply col-

lecting raw audit data from a network.

Most unsupervised anomaly detection systems [15, 16] use information extracted

from the packet headers. On the contrary, some more recent approaches also con-

sider the payload content. In particular, in [17] a payload-based anomaly detector

for intrusion detection is proposed. It models the normal application payload of net-

work traffic in a fully automatic and unsupervised way. During the detection phase,

the Mahalanobis distance is used to calculate the similarity of new data against the

pre-computed profiles. In [18], a two-stage architecture is presented: the first stage

is made-up of an unsupervised clustering algorithm that classifies the payload of

the packets, observing one packet at a time and compressing it into a single byte of

information. The second stage is a traditional anomaly detection algorithm, whose

efficiency is improved by the availability of data on the packet payload content.

Finally, it is worth mentioning that, in order to keep as low as possible the num-

ber of false alarms, alert correlation techniques have been also proposed in the last

years [19, 20]. Alert correlation is a process that mainly tries to give a high-level

description of occurring or attempted intrusions by using the sequence of alerts pro-

vided by one or more IDS [20].

2.1.1 A Pattern Recognition approach

Different attack types can occur in a real network. The most used attack taxonomy

in the IDS field is the one proposed by Kendall in [21]. Here attacks are grouped

into four major categories: Probes, Denial of service (DoS), Remote to local (R2L)

and User to root (U2R). The first category is made up of attacks that test a potential

target for collecting information about a possible intrusion. Therefore, they are usu-

ally harmless, unless vulnerability is discovered and later exploited. DoS attacks, as

previously seen, prevent normal operations, but do not violate the target host. On

the contrary, the last two categories group attacks that permit the attacker to com-

promise the target host. In particular, in R2L attacks, an unauthorized user is able

to bypass normal authentication and to execute commands on the target host, while

in U2R attacks, a user with login access is able to bypass normal authentication to

gain the privileges of another user, typically the root user.

Using this taxonomy, network intrusion detection can be also seen as a typical

Pattern Recognition problem [22] : given information about network connections

between pairs of hosts, the task is to assign each connection to one out of five

classes, respectively representing normal traffic conditions and the four different

attack categories described above. Here the term ”connection” refers to a sequence

of data packets related to a particular service, as a file transfer via the ftp protocol.

Since an IDS must detect connections related to malicious activities, each network

connection can be viewed as a ”pattern” to be classified.

As regards the features used for describing network connections, it has to be

noted that malicious activity cannot be detected by examining just a single packet:
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some types of attacks generate in a certain time interval a great amount of packets

belonging to different sessions. Hence, an effective detection needs statistical pa-

rameters taking into account the temporal relation between sessions. Starting from

this observation, Lee and Stolfo [23] defined a set of connection features which

summarize the temporal and statistical relations of the connections with reference

to each other. Such features have been used for generating the 1999 KDD Cup Data1,

that is the most well-known database in the pattern recognition and machine learn-

ing fields.

The above described formulation of the network intrusion detection problem im-

plies the use of an IDS based on a misuse detection approach. However, the main

advantage of the pattern recognition approach is the ability to generalize which is

peculiar to pattern recognition systems. They are able to detect some novel attacks,

without the need of a complete description of all the possible attack signatures, so

overcoming one of the main drawbacks of the misuse detection approach. In fact,

signature based systems may fail in detecting attacks that underwent even slight

modifications with respect to a known pattern. On the other hand, the difficulty

in collecting a representative labeled set of data for training a pattern recognition-

based system could be overcome, for example, by following the approach proposed

in [13]. Here, the authors suggest using an unsupervised algorithm for recovering

the anomalous elements from an unlabeled set of data. After anomalies or intrusions

are detected and removed, it is then possible to train a misuse detection algorithm

over the polished data.

The feasibility of the pattern recognition approach for the intrusion detection

problem has been addressed in [22]. Different pattern recognition systems have been

proposed in the recent past for realizing an IDS, mainly based on neural network

architectures [11, 24, 25]. In order to maximize performance, approaches based on

multiple classifier systems have been also proposed [22, 26].

An objection against most of the papers reviewed in this subsection is that the au-

thors only test their approaches off-line, so disregarding the problems arising when

a real-time intrusion detection has to be performed. Traffic model definition based

on an off-line analysis, in fact, does not consider the unavoidable problems of real-

time computation of connection features. In real-time intrusion detection, instead,

the incoming packets do not contain all of the information needed to compute the

connection features, but an appropriate system has to be implemented in order to

compute relations among the existing connections. Moreover, off-line analysis does

not consider the problem of potential packet losses in the IDS, which has to be taken

into account in the case of real-time analysis.

On the contrary, in this paper we present an architecture for real-time intrusion

detection. It is capable to effectively detect intrusions and to operate under a variety

of traffic conditions, thus providing a solution to the issue of real-time analysis. As it

will be better described later, our intrusion detection system uses a set of connection

features, derived by those proposed by Lee and Stolfo, in order to fully exploit the

advantages of a pattern recognition approach. In the following we will also present

1 http://kdd.ics.uci.edu/
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an implementation of this architecture within the proposed framework for intrusion

detection and reaction, and evaluate its performance in a real network scenario, by

focusing on the evaluation of the packet loss increase due to the computation of the

connection features.

2.2 Traceback

IP Traceback [27] is concerned with detecting the source(s) of a DoS attack, as a

fundamental step to allow the adoption of an effective defense strategy. The most

complex issue to be faced when performing traceback, is related to the fact that

attackers often use spoofed IP addresses, thus preventing effective detection via a

simple analysis of the IP header of the received packets. To avoid this problem,

packet marking techniques are often employed [28].

Node Append is the easiest form of marking currently available: routers add to

each packet their own IP address. This clearly facilitates the traceback process, at

the cost of a substantial overhead. Node Sampling and Edge Sampling try mitigating

such a problem by relying on probabilistic packet marking techniques, thus reducing

the overhead. The drawback of these two approaches resides in the need for more

complex path reconstruction algorithms.

Our approach to traceback, does not alter regular IP packets at all, but it is based

on an ad-hoc defined signaling protocol among routers. By means of recursive hop-

by-hop message exchanges, it is possible to go upstream until reaching the actual

attack source, without relying on possibly deceptive information carried by hostile

IP packets. This approach has the major advantage to clearly separate the forwarding

and the control planes, thus allowing a better control over the induced overhead.

Many works addressed the problems related to possible approaches to reaction. In

particular, in [29] a defense strategy against DoS attacks is described. It is based on

a packet marking technique located at the edge of the considered domain. The labels

associated with each packet are used to identify attacks. This approach presents two

major drawbacks: (i) it is not that efficient to mark and check labels for all packets,

since it requires a significant router CPU time; (ii) the attacker could intercept true

labels and use them to pass off as a benign sender.

In [30] the authors address the need of designing a network protocol for defining

the set of information that different routers must send each other. They only describe

the main ideas of such a protocol, by emphasizing authentication issues.

Again, our approach is based on a different perspective. It defines an overlay ar-

chitecture which does not influence the regular forwarding mechanisms during nor-

mal network operation, thus leaving unchanged overall network performance. Only

upon detection of an intrusion, our infrastructure instantiates its own data structures

and triggers a distributed signaling process in order to properly react. This aspect

fosters an incremental deployment of the system within the network. In other words,

density of routers inside the network just affects overall attained performance, with-

out compromising system operation.
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Another interesting work on this topic is represented by [31]. Their approach

has many similarities with ours: as the authors themselves highlight, DDoS threat

cannot be addressed through isolated action of sparsely deployed defense nodes.

Instead, various defense systems must organize into a framework and interoperate,

exchanging information and service, and acting together against the threat.

3 The Proposed Framework

The reference framework is depicted in Fig. 1. It shows the three main components

which will be described in more detail in the following sections of this work:

Intrusion Detection System: based on models for anomalous traffic classification,

it uses traffic summarization algorithms (feature computation) and pattern recog-

nition techniques in order to classify anomalous traffic; traffic probes, placed in

one or more strategic points of a network architecture, act as input units; compu-

tation results are presented in the form of alert signals, which feed the reaction

components; our implementation of this component, is based on the Snort™ [37]

IDS, which has been appropriately modified in order to be integrated in the pro-

posed architecture;

Anonymizer: a module useful to strip and/or scramble sensitive data (MAC- and

IP-level addresses, application-level information, etc.) from real traffic traces;

such traces are required to train pattern-recognition algorithms used for intrusion

detection, and their anonymity is needed in order to preserve users’ privacy;

Intrusion Reaction System: alert signals coming from the intrusion detection

module, act as triggers for processes of information exchange among network

routers, aimed at tracing back the attack sources, and thus limiting their range of

action as much as possible.

Such an architecture is designed to rely on a classic network IP infrastructure.

Data flowing through the network are copied and distilled, before feeding the net-

work security system.

From the transport network point of view, the framework can be definitely seen

as a parallel information extraction and processing system which, in absence of any

anomalies, does not interfere at all with regular network operation. Only in case

anomalies are detected, the security system is enabled to engage appropriate coun-

termeasures, by following a policy based configuration paradigm. Policies activate

onto the network actions belonging to two main different classes:

• policies for altering normal traffic forwarding schemes (e.g. shaping, dropping);

this is useful to mitigate the effects of an attack by means of a fine grained

intervention on single packets; such policies configure the behavior of traffic

classifiers and traffic scheduler modules embedded in the routers forwarding

plane;
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Fig. 1 Macro-components positioning within the security system framework

• policies for logging traffic packets belonging to well-identified flows; this is

aimed at both archiving anomaly-related data and collecting information useful

for a better system tuning after an offline analysis.

The main architecture building blocks have been implemented as distributed

components, although they are represented as logically centralized blocks in the pic-

ture. Since attacks might be originated from multiple sources, physical distribution

of components plays a fundamental role to improve overall system performance.

This is especially true for intrusion reaction components, which in our architec-

ture are fully embedded in the network routers, enabling at network level security-

oriented packet classification and scheduling algorithms.

This also means that the logical security framework depicted in the top part of

Fig. 1 is actually deeply deployed in the network infrastructure. More precisely, it

belongs to the control plane of each router, and affects the forwarding plane only in

case of need for facing attacks.

In the following, these three main components will be described in greater detail,

by highlighting both the internals and the communication paradigms which enable

them to cooperate in order to achieve in an orchestrated fashion a full network pro-

tection against DDoS attacks.

4 An Architecture for Intrusion Detection

As stated in Section 3, an IDS is one of the crucial components in order that the pro-

posed system could effectively work. In this section we will describe the issues re-

lated to building a real-time IDS, all the components such a system needs, their role
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in the whole architecture, and the impact of each of them on the overall performance.

We will present a framework which implements such a general model employ-

ing computational intelligence techniques, proper of the pattern recognition field,

aimed at improving the capability of the system to detect novel attacks [33, 14].

We will individuate some bottlenecks of the proposed framework and, based on the

concept of distribution of concerns, we will also introduce a distributed version of

the architecture. We will show how it helps improving the scalability of the sys-

tem, thus enabling a more in-depth analysis of the scanned traffic without affecting

too much the real-time requirement; hence, more complex and elaborate detection

techniques can be used. The timeliness requirement for the intrusion detection op-

eration is strictly needed as the overall goal of the project is the definition and the

implementation of an intrusion detection and reaction framework: the quicker and

prompter the reaction to an attack is, the more it results in an effective defense of the

monitored environment. Some privacy issues, related to the need to prevent users’

sensible information to be accessible without explicit consent or permission, will

also be discussed and an approach to traffic anonymization will be presented.

4.1 An Approach to Intrusion Detection

The work of an IDS consists in analyzing some input data. Input data might range

from audit trails and operating system or application logs to raw network traffic.

According to the selected class of input data, the used system can be ascribed to one

of the classes of IDS described in Section 1.

Despite the inherent differences among IDS classes, some common building

blocks can be identified, with respect to the high level functionalities needed for

fulfilling the task of detecting intrusions. Such components, depicted in Fig. 2, are:

Fig. 2 Canonical IDS structure



180 M. Esposito et al.

Sensor: whatever the used input data is, a component is needed which can read

such data and convert it to a format which is compatible with the one required

from the analyzer. The conversion into such a format sometimes involves the

extraction of some parameters of interest aimed at synthesizing the properties of

the data which are of greater interest for the problem at hand. In the case of the

proposed intrusion detection system, network packets are usually decoded, all

the header fields are evaluated, and a set of traffic features are computed, related

to some statistical properties of the traffic.

Analyzer: once the data is modeled into a common format, it needs to be ana-

lyzed. In principle, the analyzer component of such an IDS could be independent

of the type of data. It needs to be aware of a set of criteria aimed at detecting

some particular properties in the analyzed data and, when at least one out of such

criteria is matched, notify an entity about the occurrence of such an event. If

each criteria is associated to the most likely cause which might have generated

the event it’s related to, the analyzer not only is able to notify in case of the oc-

currence of some particular events, but is also able to ascribe such events to a

generating cause, thus enabling the classification of each reported event.

Event Notifier: any time the analyzer reports the occurrence of some events, it is

necessary to enable the whole system to communicate with the external world, in

order to allow the notification of such occurrences. The event notifier is in charge

of interpreting the results of the analysis and correctly formatting the messages

required for communicating with the system users.

According with such canonical architecture, we proposed a framework for intru-

sion detection exploiting pattern recognition techniques so as novel attacks can be

identify. The reference framework is depicted in Fig. 3.

Fig. 3 A Framework for Intrusion Detection

The overall model is composed of two parts: the former is a real-time intrusion

detection system which analyzes and classifies network traffic based on well-known
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user behavioral models; the latter is a pattern recognition process, which extract such

behavioral models from pre-elaborated network traffic, and consists of a database of

labeled network traffic features and a pattern recognition algorithm.

In particular, as discussed in more detail later, we execute an off-line algorithm

on a suitably chosen data set in order to extract a set of behavioral rules; such a set

is then used in the real-time classification process deployed by the IDS.

4.1.1 Real-Time Intrusion Detection

The on-line system presents some operational blocks which perform the function-

alities described for a canonical IDS architecture. The lowest block is the proces-

sor module, which essentially implement the sensor’s functionalities. Connected

directly on the network infrastructure, the processor firstly performs the sniffing

task, capturing and decoding in a human-readable data all the packet on the wire.

Then, it elaborates the packet captured in order to extract a the set of information;

such information, called connection features, are needed to improve the behavioral

classification process. The connection features represent a summarization of the net-

work user behavior. The greater the capability of the set of features to discriminate

among different categories, the better the classifier.

There are three levels at which feature sets may be defined:

• The features may be referred to the single packet captured from the network:

although this set is easy to compute, it is not able to detect all the potential

attack types.

• A set of features related to the entire session which the packet belongs to may

be defined:

this is due to the fact that some intrusions may be realized by means of a se-

quence of packets belonging to either the same connection or different connec-

tions.

• The computed set of features may perform a statistical analysis of the relation

between the current session and the other ones:

this is needed in order to capture intrusions which affect the interrelation among

different sessions.

To cope with the aforementioned requirements, we have adopted a model de-

scending from the one proposed by Lee and Stolfo [34]. Such model characterizes

the user behavior by means of a set of connection properties, the connection fea-

tures; the features can be classified in three main groups: intrinsic features, traffic

features and content features. Intrinsic features specify general information on the

current session, like the duration in seconds of the connection, the protocol type, the

port number (i.e. the service), the number of bytes from the source to the destination,

etc. (see Table 1).

The traffic features can be divided in two groups: the same host and the same

service features. The same host features examine all the connections in the last two
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duration connection duration (s)

protocol type type of transport protocol

service port number on the server side

src bytes bytes from source to destination

dst bytes bytes from destination to source

flag status of the connection

land land attack

urgent number of urgent packets

Table 1 Intrinsic Features

seconds to the same destination host of the current connection, in particular the num-

ber of such connections, or the rate of connections that have a “SYN” error. Instead,

the same service features examine all the connections in the last two seconds to the

same destination service of the current one. These two features set are defined time-

based traffic features because they analyze all the event occurred in a time interval

of two seconds (Table 2); some types of attacks, instead, as the slow probing, may

occur every few minutes. Therefore these features could not be proper able to detect

all the attack types. To this aim a new set of traffic features, called host-based, have

been defined; the same host and the same service traffic features are also computed

on a window of one hundred connections rather that on a time interval of two sec-

onds. Finally, the content features are related to the semantic content of connection

payload. In our framework, however, we will adopt only the intrinsic and the traffic

features. Our purpose is to realize network-based intrusion detection system, while

the the content features are more adapted in a host-based scenario. In fact, payload

content inspection can be easily evaded when using ciphered communication or tun-

neled flows, so as to make the content feature useless. Thanks to the access to the

operating system’s audit trails or system logs, an H-IDS is instead more efficient in

the analysis of the dangerous commands execution on a single host. It is also worth

noting that content features were originally proposed for trying to detect R2L and

U2R attacks, while our framework is focused on the detection of DoS attacks.

Same Host

count number of connections to the same host

serror rate % of connections with SYN errors

rerror rate % of connections with REJ errors

same srv rate % of connections to the same service

diff srv rate % of connections to different services

Same Service

srv count number of connections to the same service

srv serror rate % of connections with SYN errors

srv rerror rate % of connections with REJ errors

srv diff host rate % of connections to different services

Table 2 Time-Based Traffic Features
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The main issue of the features computation process is related to the need of keep-

ing up-to-date information about the current connection, as well as on the other ac-

tive sessions. We have to keep in memory a representation of the current network

state in order to evaluate the statistical relations among the active connections. Data

in memory have to be properly organized in order to reduce feature computation

time.

The classifier is the core of the proposed architecture; this component analyzes

the current connection features and classifies them. Based on of a misuse detection

approach, the classification process uses a set of rules extracted by means of pattern

recognition algorithms. The features are compared against all the rules in the set;

when the examined vector of features matches at least one rule, an intrusive action

is detected. As to the connection data in the processor component, the rules may be

organized in memory in a suitable way in order to reduce the time of analysis.

In the following we will introduce the main issues related the implementation of

the real-time component of our framework.

The implemented architecture addresses the main requirements of a real-time

detection system: monitoring the network traffic in order to extract a set of features

from it, as well as behavior classification based on the extracted features. Monitor-

ing, in particular, is the most challenging issue to face from the point of view of a

real-time analysis. In our architecture, the monitoring system can be divided into

two components: the sniffer that captures traffic from the network, and the proces-

sor that computes both the intrinsic and the traffic features. While in an off-line

analysis features computation is simpler, since all the information about connec-

tions are stored in a database, in a real-time analysis statistic measures have to be be

computed every time a new packet is captured from network [35].

In order to extract features from the traffic, an effective processor must ensure

two requirements:

• it holds information about the state of the connection which the analyzed packet

belongs to;

• it holds comprehensive information about the traffic flows that already have

been seen across the network.

According to the definition proposed in the previous section, every packet can be

considered as a single unit that is inserted in a more complex structure, namely the

connection, and on which the features are computed. While neither UDP nor ICMP

traffic requires a heavy load of computation, TCP traffic requires to emulate the TCP

state diagram both on the client and the server sides and for every active connection.

In particular, when a new packet is captured, the system retrieves information about

the connection to which such a packet belongs and updates the connection state of

both the client and the server based on the TCP protocol specifications.

In order to compute the statistical relations, information on the past TCP, UDP

and ICMP flows is required, including those connections which have been closed.

Traffic features, in fact, are computed by analyzing all the connections (either ac-

tive or expired) having similar characteristics — besides the destination IP address
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and/or the destination port — to the current one. Every connection has to be kept in

memory until it is not needed anymore for other computations.

Our architecture is implemented by means of the open-source N-IDS Snort™;

we have used this system as the base framework on top of which we have built

our components. Snort™ is a lightweight network IDS created by Marty Roesch.

Its architecture is made up of four main blocks: a sniffer, a preprocessor engine

that realizes a pre-computation of captured packets, a rules-based detection engine,

and a set of user output tools. Thanks to Snort™’s modular design approach, it

is possible to add new functionality to the system by means of program plugins.

Moreover, Snort™ provides an efficient preprocessor plugin that reassembles TCP

streams and can thus be used to recover the TCP connections status.

We have implemented a new preprocessor plugin which computes the connection

features and a new detection plugin which implements the classification process of

the feature vectors.

4.1.2 A Preprocessor Plugin for Snort™

The main issue we tackled has been the computation of the traffic features, which

requires that a proper logical organization of the data is put into place in order to

recover information on the past network traffic. Moreover, to assure that the real-

time requirement of the system is met, a fast access to stored data is mandatory.

As to the data structures, we have adopted a binary search tree. In the worst case

this structure guarantees a performance comparable with a linked list from the point

of view of search time; performance further improves in case the tree is a static

and well-balanced one. Unfortunately, our structure is not a static tree because the

connections are not known in advance; though, a self-adjusting binary tree can be

adopted in this case in order to balance a dynamic tree.

We have used a Snort™ library of functions to manage the so-called Splay Trees.

A Splay Tree is an elegant self-organizing data structure created by Sleator and

Tarjan [36]: it actually is an ordered binary tree, in which an item is moved up to the

entry point — i. e. the tree root — whenever it is accessed, by means of a number of

rotations of the item with the parent nodes. This makes it faster to access the most

frequently used elements than the least frequently used ones, without sacrificing the

efficiency of operations such as insert and search. It can be shown, in fact, that the

amortized complexity of the search, insert and delete operations on a splay tree is

O(logn)[36].

With the above mentioned tree structure, we have implemented two trees, a Same

Host Tree and a Same Service Tree to compute the same host and the same service

traffic features, respectively. Every node in the tree is identified by the destination

IP address in the first tree, or by the destination service in the second one. In this

way, we want to store in the same node information about all the connections that

share the same characteristics. In order to compute both the time-based and the host-

based traffic features, for every node in the tree we have implemented two linked

lists, one for each set. The linked lists contain information like source IP address
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and/or source port for all the connections that have been identified and that have

the same destination IP address and/or the same destination service (Fig. 4). The

elements of the list, one for every connection, are ordered in time: the first element

is the oldest one, the last is the most recent.

Fig. 4 Same-Host Tree Structure

When a new packet is captured from the network, our preprocessor plugin first

analyzes the protocol of the packet in order to identify the most appropriate proce-

dure to compute the intrinsic features. If the packet belongs to either a UDP or an

ICMP traffic, the information required to compute the intrinsic features is entirely

contained in the packet. In case of TCP traffic, the procedure recovers the session

which the packet belongs to in order to determine some crucial information, like

the duration of the connection or the number of bytes sent along both directions of

the stream, that cannot be directly inferred from the packet. Then, the procedure

analyzes the destination IP address and the destination port to compute the traffic

features. The searches in the two trees are performed: if no node has been found, a

new one is created, and the traffic features relative to the current connection are set

to zero. If a node is already in the tree, the procedure analyzes the two linked lists

to compute the statistics for both time-based and host-based traffic features. Every

element in the list is analyzed and the statistics are updated. During this process

the elements that do not belong neither to a time interval of two seconds, nor to a

window of the latest one hundred connections, are pruned.
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4.1.3 A Detection Plugin for Snort™

While the preprocessor is not straightforward to implement, as it has many commit-

ments to pursue within the packet interarrival time, the detection plugin conversely

requires lower implementation efforts. Such a plugin is the implementation of a

classifier, which just compares every feature vector extracted from the network traf-

fic with a suitable set of classification criteria; in the case of Snort™, every rule

describes a particular behavior model by assigning the feature patterns the traffic

must to have in order to be classified as an attack. The feature vectors related to the

current connection are sequentially compared with a set of rules; the classification

terminates when the rules are finished or as soon as the feature vector matches a rule.

From an implementation point of view, we have implemented the comparison func-

tion. Each time new parameters to evaluate are inserted in the system, a description

must be provided of the activities which can be carried out on such parameters. As

an example, if a numerical quantity is evaluated from network traffic, it is necessary

to define the syntax for writing behavior rules containing such feature, and to define

the comparison operators the system must use to decide whether a particular logical

condition on the new parameter is met.

4.1.4 Pattern Recognition for Intrusion Detection

As stated in a previous section, the general framework is composed of two parts: the

on-line process of real-time monitoring and classification, and the off-line process

of classification behavior model extraction. In this section we present a different

contribution, dealing with an approach to the off-line extraction of models.

In particular we will illustrate the computational intelligence techniques used for

extracting behavioral model, techniques that can be profitably exploited in a real-

time system.

One of the main issues related to pattern recognition in intrusion detection is

the use of a proper data set, containing user profiles on which the data mining pro-

cesses work in order to extract the patterns. In principle, an efficient set of patterns

for the detection has to contain all of the possible user behaviors. Moreover, the

data set has to properly label the behavior profile items with either “normal” or

“attack”. Although this might look like an easy task, labeling the data imposes a

pre-classification process: you have to know exactly which profile is “normal” and

which is not.

In order to solve the issue related to data set building, two main approaches are

possible: the former relies on simulating a real-world network scenario, the latter

builds the set using actual traffic.

The first approach is usually adopted when applying pattern recognition tech-

niques to intrusion detection. As stated in Section 2.1.1, the most well-known

dataset is the KDD Cup 1999 Data, which was created for the Third International
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Knowledge Discovery and Data Mining Tools Competition2, held within KDD-99,

the Fifth International Conference on Knowledge Discovery and Data Mining. Such

a set was created by the Lincoln Laboratory at MIT in order to conduct a compar-

ative evaluation of intrusion detection systems, developed under DARPA (Defense

Advanced Research Projects Agency) and AFRL (Air Force Research Laboratory)

sponsorship3.

Although widely employed, several criticisms have been raised against the 1999

KDD Cup Data [15, 37]. Indeed, numerous research works analyze the difficulties

arising when trying to reproduce actual network traffic patterns by means of simu-

lation [38]. Actually, the major issue resides in effectively reproducing the behavior

of network traffic sources.

Based on the considerations above, it appears evident that the KDD Cup 1999

Data can just be used to evaluate the effectiveness of the pattern recognition algo-

rithms under study, rather than in the real application of intrusion detection.

Collecting real traffic can be considered as a viable alternative approach for the

construction of the traffic data set [39]. Although it can prove effective in real-time

intrusion detection, it still presents some concerns. In particular, collecting the data

set by means of real traffic needs a data pre-classification process. In fact, as stated

before, the pattern recognition process needs a data set in which packets are labeled

as either “normal” or “attack”. Indeed, no information is available in the real traffic

to distinguish the normal activities from the malicious ones in order to label the

data set. So we have a paradox: we need pre-classified traffic in order to extract

the models able to classify the traffic. Last but not least, the issue of privacy of

the information contained in the real network data has to be considered: payload

anonymizers and IP address spoofing tools are needed in order to preserve sensitive

information (see Section 4.4).

This notwithstanding, we preferred to adopt the real traffic collection approach

for extracting the network behavior models. This approach needs to define a suitable

method to: (i) collect real data from a network; (ii) elaborate such information in

order to build and appropriately label the associated data set.

Our data set has been built by collecting real traffic on the local network at Gen-

ova National Research Council (CNR). The raw traffic data set contains about one

million packets, equivalent to 1GByte of data. The network traffic has been cap-

tured by means of the TCPdump tool and logged to a file. In order to solve the pre-

classification problem (which, as already stated, requires labeling the items in the

data set), we have used a previous work of Genova’s research team. By using differ-

ent intrusion detection systems, researchers in Genova have analyzed the generated

alert files and manually identified, in the logged traffic, a set of known intrusions.

We have leveraged the results of this research in order to extract the connection fea-

tures record and properly label it with either a normal or an attack tag, as it will be

clarified in Section 4.2.

2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3 http://www.ll.mit.edu/IST/ideval
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After building the data set, we have focused on the management of the data in

order to realize the pattern recognition process. Every record in the data set is com-

posed of the 26 connection features described in Section 4.1.1. Indeed, just few fea-

tures can be used to tell apart normal from anomalous traffic in the analyzed network

scenario. In fact, some attacks can be classified only with a small set of connection

features. This can be considered as an advantage: we can reduce the dimensional

space of the data set, letting the pattern recognition process become simpler. Com-

mon to pattern recognition and data mining processes, the issue of feature subset

selection is known as feature selection problem. In feature selection, the objective

is to select the smallest subset of features that meets the classification performance

requirements, at the same time reducing computational complexity. This technique

is based on the notions of relevance and irrelevance of the features with respect to

the specific classification process [40]. In our context, we have adopted ToolDiag4,

a pattern recognition toolbox, in order to realize the feature selection.

The last step in our work has concerned the extraction of network behavior pat-

terns from the data set. By using the connection features defined in 4.1.1 for repre-

senting network traffic, we chose to characterize attacks by using a set of rules, in

order to utilize the above described Detection Plugin for Snort as classifier. Among

the various techniques proposed so far for extracting a set of rules from a data set, we

have adopted the SLIPPER5 [41] tool. SLIPPER is a rule-learning system exploiting

the Boosting technique [42].

4.2 Performance evaluation

In this section we present some experimental results concerning both the attack

detection capabilities attained by using the proposed approach and the feasibility of

the proposed system. We will mainly focus on the missed detection rate and, more

important, on the false alarm rate, which is a critical requirement for an effective

intrusion detection system [43]; furthermore, we will evaluate the overhead on the

performance of Snort caused by the operation of the preprocessor plugin.

Besides the measurements regarding the effectiveness of the employed detection

techniques, our purpose is to show the affordability of real-time intrusion detection,

by evaluating, in particular, the increase in packet loss ratio using a general purpose

machine. Such tests are deployed in two scenarios: in the first case, we built a testbed

to emulate network traffic in a controlled environment; in the second, we sniffed traf-

fic flowing on the Genova CNR local network. We evaluated Snort™alone, version

2.1.0, and Snort™plus our plugins. In both cases we observed a very low increase

in packet loss ratio, showing the affordability of such a technique (Table 3).

Though in other pattern recognition applications a false positive rate below 5%

may be a very satisfactory value, in intrusion detection such a rate may not be ac-

4 http://www.inf.ufes.br/ thomas/home/tooldiag.html
5 http://www-2.cs.cmu.edu/w̃cohen/slipper/
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Snort-2.1.0 Snort + Plugins

Emulated Traffic 0.39% 0.42%

Real LAN Traffic (Genova CNR) 0.14% 0.16%

Table 3 Packet Loss

Train Error Rate Test Error Rate Hypothesis Size Learning Time

0.20% 0.36% 10 Rules, 37 Conditions 217.33s

Table 4 Detection accuracy after feature selection – Average values

Training Set Test Set Missed Detections False Alarms

1st Half 2nd Half 33.59% 0.06%

2nd Half 1st Half 50.41% 0.03%

Table 5 Detection accuracy after filtering and feature selection

Training Set Test Set Missed Detections False Alarms

1st Half 2nd Half 13.57% 0.16%

2nd Half 1st Half 55.32% 0.07%

Table 6 Detection accuracy without feature selection

ceptable. For example, if we imagine to work on a network with a packet rate of

1000000 packets per hour, a false alarm rate of 0.1% would lead to 1000 annoying

alert messages sent to the administrator every hour: though characterized by a very

low false alarm rate, the number of unjustified alerts would be too high and would

lead the administrator to ignore or eventually switch the intrusion detection system

off.

We ran different tests on some previously collected data (see Section 4.1.4). First

of all, we decided to subsample the data by a factor of 1/10 in order to reduce the

computation time of the results; as stated before, we use ToolDiag for the feature

selection step and SLIPPER for the classification. In the first experiment we sub-

sample the data-set by choosing one connection record out of ten, then we split the

subsets in two parts. On each of the half-subset obtained we perform feature se-

lection and, by examining the discriminating power and the number of occurrences

over the whole data set of the selected features, we choose an “optimum” set of 8

features out of the 26 features available. By “optimum” feature, we mean a feature

whose ability to discriminate between attacks and normal traffic, within the train-

ing data, is the highest with respect to the discriminating power of all the examined

features. We consider then, in turn and for each subset, the first half as the training

set, and the second half as the test set; then we swap training and test sets, using

the second half of each subset as the training set and the first half as the test set.

All these experiments are useful to understand which is the best data set we have,

as we suppose to have no prior knowledge about the discriminating power of the

connection records included in each one of them. In table 4 we point out the average

values emerging from the analysis of the presented results.
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Training Set Test Set Missed Detections False Alarms

1st Half 2nd Half 13.79% 0.16%

2nd Half 1st Half 62.19% 0.05%

Table 7 Detection accuracy after filtering without feature selection

Training Set Test Set Missed Detections False Alarms

1st Half 2nd Half 4% 0%

2nd Half 1st Half 0% 0%

Table 8 Detection accuracy without feature selection – Trin00 attack

Training Set Test Set Missed Detections False Alarms

1st Half 2nd Half 0% 0%

2nd Half 1st Half 0% 0%

Table 9 Detection accuracy after filtering and without feature selection – Trin00 attack

It is worth pointing out that the data we are working on contain some connec-

tion records tagged as uncertain. During the data preparation, we decided to label

as attacks the connection records corresponding to the packets classified as attacks

by both the IDS used at Genova CNR; in case only one of the used tools raised

an alert, in this first experiment we decided to label the corresponding packet as

normal. It is straightforward, indeed, to have a doubt about this approach: what if

the uncertain packets were attack packets? Would this affect in a meaningful way

the detection capability of the system? We had two chances: we could consider the

uncertain packets as attacks as well, though this would have led us to a complemen-

tary mistake with respect to the one committed so far; we could, as well, simply

discard such packets, considering them as belonging to an unknown class of traffic.

Thus we built and processed a “filtered out” data set, made up by all the connection

records corresponding to packets whose classification was clear enough, obtained

by deleting from the set the uncertain connection records.

Again we proceeded with feature selection and obtained, in the same way as

before, the best set of eight features. On the filtered data we decided to deploy a

test by using the whole dataset, with no subsampling. We divided the dataset in two

halves and, in Test 1 we considered the first half as the training set, and the second

half as the test set; in Test 2, instead, we consider the second half of the data set as

the training set and the first half as the test set.

Furthermore, to test the effect of feature selection on the detection capability

of the system, we decided not to apply subsampling, and to test the classifier on

the datasets before and after the filtering process described above (tables 6, 7). We

notice a very low false alarm rate, which is good, and a missed detection rate some-

times around 60%. This might seem a not so good result, but it is not; missing an

attack packet does not mean to miss the whole attack itself; in fact, an attack pattern

may consist of a burst of packets thus, not detecting a few of such packets doesn’t

mean to lose the attack. Stressing again the false alarm rate problem, we notice
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that the rate obtained within our experiments is very low, and encouraging for the

development of this kind of detection techniques.

In order to strengthen these observations, we also sketch, in Table 8 the detection

capabilities tested over a particular DoS attack, Trin00, which is always correctly

detected by our IDS without rising any false alarm. This confirms the applicability of

the realized IDS within the proposed framework for intrusion detection and reaction.

Finally, as we have a little lower missed detection rate when not using feature

selection, we noticed an increase of one order of magnitude in rule calculation time

and number of rules. This is due to the fact that we have to strike the balance between

detection accuracy, number of adopted criteria and computation time.

4.3 A Distributed Intrusion Detection System

In this section we want to deal with the design of a distributed architecture for IDS

based on the previous implementation. Our idea starts from the assumption that it is

possible to divide the monitoring and user behavior extraction process, performed

by the preprocessor engine in the ”monolithic” architecture, from the classification

process. In fact, the two processes are sequential and substantially independent: they

could be realized by two different programs, just realizing the suitable interface

between them. The classification process, in fact, require just the set of connection

features and other few information to realize its detection process. According with

this assumption, it is possible to realize two separate process, in case running on

different machines, that communicate between them by means of a network. As we

will see in the following, such an approach introduces a lot of advantages in the IDS

efficiency.

Our architecture is based on previous experiences in the field of the ”collabora-

tive” systems; an example of these systems is the well known project seti@home 6,

proposed by the University of California at Berkeley. In spite of previous distributed

intrusion detection systems [44, 45], which mainly realize the ”distribution” of the

monitoring process by means of a set of probes locate within the network, but having

usually a ”centralize” classification process, our architecture realizes also the ”dis-

tribution” of the classification process. In particular, we have a set of elements that

first separately realize the classification of the user behavior and then collaborate in

order to compute a final result on the detection process. The proposed architecture

is shown in the Figure 5.

Such architecture allows us to improve the IDS efficiency with regard to several

aspects. First, a distributed system allows the separation of concerns among a well-

defined set of entities, each suited to deal with a particular aspect of the problem.

This on one side simplifies the task of each involved entity, and on the other side

allows a deeper specialization of each module, which can thus be modified without

necessarily affecting the performance of the overall system.

6 http://setiathome.ssl.berkeley.edu/
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Fig. 5 Distributed IDS Architecture

As for the effectiveness of the IDS classification process, our architecture intro-

duce two important advantages. First, one of the main problem related to the classi-

fication problem of IDS is the packet loss; if some packets are lost, the information

contained in the user behavior features could be compromised, so several traffic pat-

terns could be misclassified, and a great amount of false alarms or missed detections

could be generated. In order to improve the effectiveness of the classification pro-

cess, we need to reduce the packets loss; this can be performed by a distribution of

the task: a process that realize exclusively the traffic sniffing and the summarization

of the user behavior, and a process that classifies them. Some preliminary experi-

mental results have shown the effectiveness of such a solution [47]. Moreover, the

distributed system can improve the capability of the classification process: it is pos-

sible to adopt different methodologies, for example the anomaly detection or the

misuse detection, adding just a new detection module for each new methodologies.

Adopting several detection techniques to analyze the same network traffic, we can

improve the detection capability exploiting the advantages of each techniques. Such

approach could reduce the number of false alarms or missed detections.

Finally, adopting a distributed systems, we could improve also the intrinsic secu-

rity of the overall system. In a monolithic IDS architecture the system itself could be

victim of several threats: a direct attack to the IDS can compromise the security of

overall network. Distributing the functionalities among different components allows

us to improve the security because an attack must compromise all the components

to gain the same effect then in a monolithic architecture. Moreover, a distributed

system improves the efficiency by means of a reconfiguration system policy in case

of attack to one or more components of the architecture. Then, it is possible to ex-

pose to risk of an attack just the behavior summarization modules, protecting other

components of the architecture by a secure network zone.

Such architecture falls in a new ”autonomic” approach [48] to network security;

in particular, if we assume that the network be aware of itself, security assurance

might be regarded as a service inherently provided by network infrastructures. In

such a scenario, a framework capable to deploy, both proactively and reactively, on-

demand security services is well suited. The distributed IDS can fit such approach:
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all the components could deploy on demand in response to anomalous situations

that require network security services.

In the following we will briefly describe all the elements of the proposed archi-

tecture. The first element is the preprocessor. It has the function of monitoring user

behavior, summarizing it by means of a set of parameters – in our case the pre-

viously described connection features. In particular, the preprocessor captures the

packets directly from the network and computes the parameters related to the user

behavior. This behavior is based on the well-known Behavioral Network Engineer-

ing approach [49]. According with a distributed solution, also the preprocessor can

be realize by means of a distributed architecture, as proposed in [50].

The connection features computed by each preprocessor are then sent to another

element of the architecture, the broker; the main functionality of the broker is to

gather information coming from the preprocessors and sent it to a new set of ele-

ments of the architecture, namely detection engines. The forwarding policy can be

base on different algorithms, depending on the strategy adopted for classification

process and the set of detection engine connected with broker.

The detection engines are the core of the classification process. Such modules can

be added and removed on demand from the architecture in order to perform a spe-

cific classification strategy by means of a suitable protocol. As stated before, each

detection engine could adopt a different detection technique in order to improve the

effectiveness of the detection process. All the results provided by detection engines

are sent to the last component of the architecture, the decision engine.

The decision engine collects the information coming from the detection engines

and extracts a final result exploiting a well-known decision algorithm. Several deci-

sion techniques can be implemented such as majority voting, weighted voting [51],

or more complex solutions [52, 53].

4.4 Privacy Issues in Intrusion Detection

Pattern recognition approaches to intrusion detection, as presented in Section 4.1.4,

sometimes need a training phase to accomplish their detection task. In order for

the classification to be reliable and effective, a suitable training set must be cho-

sen, which is representative enough of the protected scenario. The samples used in

training, in fact, are the base which the knowledge of the system is built on: if such

samples don’t cover a broad enough range of the properties of the traffic the system

is bound to operate on, it won’t be able to recognize correctly some classes of traffic.

On the other hand, if the training samples are not general enough, they might lead

the system to a bias, making it too specialized for the characteristics of the training

samples alone, thus almost canceling the effects of the generalization capabilities

of computational intelligence based systems. Hence, the best choice would be to

carefully project and implement the collection of the training samples. For research

purposes, the demand for traffic traces is impelling in many research fields, both in

the networking and artificial intelligence scientific communities. Network traffic al-
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ways contains private information, thus not allowing to freely collect and distribute

any logged trace as is. Hence, as the proposed framework aims at aiding a user to

deploy a fully functional security system, it also includes some research activities

related to effective traffic anonymization [54].

Many anonymization tools are already available at production level, but most

of them are somewhat incomplete for our purposes. Such tools, in fact, only tackle

physical, network and transport layer header anonymization: by suitably scrambling

the addressing fields of such headers, they make the actors of the communication

unrecognizable by the header point of view; yet, they completely disregard the above

layers, by simply cutting off the payloads from the transport layer up. In the context

of network monitoring for security purposes, packet inspection techniques are used,

which need well-formed packets, thus including the whole payload. Indeed, when

cutting the payload off, two choices are possible: the packet dimension reported in

the header can be left unchanged, thus resulting in a malformed packet, or it can

be changed, thus altering the nature of the packet itself, together with the resulting

traffic profile. Our aim is to develop a software capable of effectively anonymizing

the header, and also replacing the private information contained in the payload with

random symbols [55]. Such an operation requires the recomputation of checksums,

in order to output well-formed packets.

For source and destination port anonymization, we simply built a function which

makes a random association between the original port and the anonymized one. For

IP address anonymization, two techniques will be described in the following, both

aiming at preserving some specific properties of the header fields.

4.4.1 Class Preserving IP Anonymization

The first issue to cope with regards the structure of an IP address. Due to the ex-

istence of different address classes, we want an anonymization tool to preserve

the class an IP address belongs to, in order to leave the relative distribution of IP

addresses over the five possible classes unchanged. Thus, we keep the four most

significant bits of the IP address untouched, so that the transform of an address be-

longing to class X , where X ∈ {A,B,C,D,E}, will still belong to the same class.

Private addresses within each class will be translated into private addresses as well.

By taking into account the different proportions between the number of available

networks and hosts within each class, we adopted different encoding and imple-

mentation techniques for each of them, resulting in an overall complexity equal to

O(logn), where n represents the number of anonymized addresses.

4.4.2 Prefix Preserving IP Anonymization

In order to preserve more of the statistical properties of the original network traffic,

it might be useful to introduce a new constraint to the anonymization operation.

The prefix preserving technique for IP addresses anonymization not only leaves
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unchanged the class of the original address, but also transforms addresses sharing a

common prefix of p bits into addresses still sharing a common prefix of the same

length. Furthermore, a random inversion of the p + 1− th bit is performed after

anonymization, in order to not introduce a longer common prefix. As an IP address

consists of a constant number of bits, each time a constant number of comparisons

with the other addresses must be performed, thus resulting in a constant complexity

of this algorithm. No matter what the number of anonymized addresses is, as an IP

address consists of 32 bits, 32 comparisons must be made at each occurrence of a

packet to be anonymized. Thus, the complexity is O(1).

5 Intrusion Reaction: a System for Attack Source Detection

Active Security SYSTem (ASSYST) has been designed to provide a mechanism

for reacting to DDoS attacks. It is a router level architecture, being its components

located inside network routers, without involving end-systems. The system is fed

by the output coming from an external IDS performing a real-time traffic analysis,

which is aimed at detecting potential attack attempts; when an intrusion is detected,

the involved router sends to adjacent routers a message carrying the attacking traffic

specification, in order to identify those located on the path to the attack. If one or

more routers realized to belong to the attack path, they would recursively apply

the same algorithm and, at the same time, would begin to mitigate the effect of

anomalous traffic, according to the parameters specified by the downstream router.

This approach guarantees the propagation of the countermeasure, until reaching the

ASSYST router closest to the attack source, thus allowing to effectively set the

limits of the attack.

5.1 The ASSYST Architecture

In Fig. 6 the conceptual model of an ASSYST router is shown. It contains the fol-

lowing modules:

Packet Classifier Intrusion Detection System (PCIDS): detects attack attempts

and provides its characteristics; it is also in charge of identifying packets belong-

ing to an ongoing attack session;

Security Reference Monitor (SRM): provides the other components with storage

capabilities for their useful information (e.g. attack sessions description data,

attack paths, . . . );

Security-Aware Traffic Control (SATC): dynamically allocates queues for pack-

ets belonging to attack sessions and enables scheduling capabilities according to

suitable disciplines; thanks to this module the effects of attack traffic sessions

can be controlled;
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Fig. 6 The ASSYST router architecture

Coordination Engine (CE): coordinates the activity carried out by all the other

modules;

Authentication Process (AP): manages authentication among nodes in order to

avoid unauthorized access to the whole distributed system;

Routing Process (RP): the local routing module;

Active Security Process: manages communication among routers by means of a

suitably designed protocol: Active Security Protocol (ASP).

5.2 Attack Sessions

An attack session is defined by the pair (IDSession, TrafficDescriptor),

where IDSession is a unique identifier for the session and TrafficDescriptor

represents the minimum set of information required in order to describe the attack

characteristics. More precisely, this last data structure hosts information related to:

• the attack source;

• the attack target;

• the characteristics of an attack.

It enables the PCIDS module to recognize each known attack pattern. It is extensi-

ble, so to let the system adapt to new kinds of attacks in a flexible way. The presented

approach to model TrafficDescriptor is inspired by the IETF Intrusion Detection

Message Exchange Format (IDMEF) [56] proposed standard.
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5.3 The ASP Protocol

The ASP protocol represents a fundamental component of the architecture, since it

enables cooperation among routers involved in an attack session. It works by starting

exchanging messages at attack detection time, with the aim of spreading information

about traffic characteristics, thus allowing routers to adopt suitable countermeasures.

The main protocol messages are reported in Table 10.

# Name Description

1 ALERT Sent, by a router presumably involved in an attack
session, to its neighbors.

2 REQUESTSESSION Sent by a router which receives an ALERT and re-
alizes to be on the path to the attack. This mes-
sage asks for details on the defense strategy to
adopt.

3 CONFIRMSESSION Sent by a router which receives a
REQUESTSESSION message. This message
specifies how to treat the attacking traffic.

4 NOPATH Sent by a router which receives an ALERT mes-
sage, but does not recognize to be on the path to
the attack.

5 ATTACKEND Sent by a router which detects the end of an at-
tack.

6 ATTACKRESUME Sent by a router which detects the resumption of
a previously ended attack.

7 PATHCONFIGURATION Detects the presence of a non-ASSYST router on
the path to the attack and suitably adapts its de-
fense strategy.

8 AUTHENTICATIONMSG Contains information useful to router authentica-
tion.

Table 10 Main ASP protocol messages

5.4 ASSYST: case studies

This section presents the protocol behavior under different hypothesis, starting from

the simplest possible case, and gradually removing the simplifying assumptions.

We start making the following assumptions:

• each DDoS attack is initiated by a single source and targeted to a single host;

• the attacker does not implement any address spoofing mechanisms;

• each router along the path supports the ASP protocol.

In the following paragraphs, we will consider the IP-spoofing assumption and

will describe the system behavior in the case of non-ASSYST routers along the

attack path.
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5.4.1 A simple case: no-spoofing in a fully ASSYST-compliant network

Once the PCIDS detects a suspicious session, it raises an alert event and sends the

associated TrafficDescriptor to the Coordination Engine (CE). The CE creates

an Active Session which triggers the traceback process. Then, it asks the Security

Aware Traffic Control (SATC) to allocate a queue for storing packets belonging to

the suspicious session and instantiate the most appropriate filter for handling them.

In the following, we will call source router the router which detects and notifies an

attack session and destination router the one which receives this notification. Com-

munication among routers is subordinated to the authentication. The source router

sends an Alert message to all its neighboring nodes. This message also contains

an identifier for the created session and the associated TrafficDescriptor. Fur-

thermore, being the router the first one detecting the attack, it temporarily designates

itself as the last router along the path, sending this information to all of its neighbors.

Upon reception of the Alert message, routers execute a monitor process aiming at

verifying whether the session matches both the detected pattern and the received

TrafficDescriptor. To the purpose, the CE instantiates a waiting session using

the information received with the Alert message. The monitor process lasts for a

predefined time interval (Alert Interval), after which, if the router did not detect any

packet belonging to the attack session, a NoPath message is sent to the source router.

This happens when the involved router does not reside along the attack path; such

a router, anyhow, keeps on monitoring the session in order to detect (and prevent)

potential attack path variations. Those routers that are on the attack path, on the

other hand, send a RequestSession message to the source router, registering them-

selves to the announced session. By doing this, each router will be aware of which

nodes are involved in the attack. Upon reception of a RequestSession message,

the router performs the following tasks:

• labels the received session as entrusted;

• sends a ConfirmSession message to the source router, requiring the Traffic-

ShapeSpec structure needed for activating the most appropriate defense strat-

egy;

• releases resources allocated by the Monitor process, since monitoring will be

performed by the upstream router along the path.

In order to better understand how ASSYST implements the traceback process,

we show an example in Fig. 7. We assume that router R1 is the first one which

detects the attack session and triggers the signaling phase by sending the messages

1a, 2a, 1b, and 2b. The message exchanging process ends up with R7 receiving

an Alert message. R7 fails to contact any upstream node, thus it recognizes itself

as the first node along the attack path. It can now detect the attacker’s identity by

analyzing the source IP address of the packets it receives. As it can be noticed, ASP

is a pure networking protocol, in the sense that it does implement a router-level

communication paradigm, not involving the end-systems at all.
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Fig. 7 An example of attack

5.4.2 Attack path variation

When an attacker recognizes that the security system detected the attack, it can try to

modify the attack path in order to evade the defense strategy adopted by the system.

In this case the new attack path happens to involve routers which have been previ-

ously alerted. In fact, routers not involved in the attack, anyhow received an Alert

message. Hence, thanks to the creation of a waiting session associated with the at-

tack, they are able to detect the same attack session. The new alerted router sends

a RequestSession to its sources, thus registering itself as the new previous node.

This causes the current waiting session to switch to a new active session. From now

on, the same process recursively applies: the source node sends a ConfirmSession

containing all the information needed to activate the most appropriate defense strat-

egy.
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5.4.3 End of an Attack

When an attack is over, all the allocated resources have to be released. To the pur-

pose, the ASP protocol provides three messages:

1. ErrorLocationSource, generated by the node which has detected the end of

the attack; it is sent to all routers along the path to inform them that no more

packets, belonging to the attack flows, are being detected;

2. AttackEnd, is an acknowledgment of the ErrorLocationSource message; it

represents a confirmation that no more attack flows are active and it frees the

allocated resources;

3. AttackPersistent, can be generated by any router along the path, which has

previously received an ErrorLocationSource message, in case it detects an

attack path variation; this message enforces resumption of the Monitor process

on all the routers along the attack path.

The described resource releasing mechanism, comes into play also in the case

of a false positive signaled by the working IDS. In fact, the Alert message sent by

a router will not be able to propagate itself along the entire attack path, due to the

expiration of the timeouts set by each router upon reception of this kind of message.

5.4.4 Attacker’s IP-address spoofing

As it can be noticed, there are no steps in the above described traceback, which

rely on the attacker IP-address. No assumptions are made about this address, except

from using it for traffic classification purposes. This, anyway, does not contribute

to identify the location of the attack, since this process is based on a hop-by-hop

traceback algorithm driven by the downstreaming traffic flow.

5.4.5 Non-ASSYST router along the attack path

In the absence of a suitable solution, the traceback process might interrupt in the

presence of a non-ASSYST router along an attack path. This prevents to approach

the attack source close enough, and undermines the overall system usefulness. It is

necessary for ASSYST routers to have knowledge at least about their neighbors in

the context of the ASSYST overlay network. Once this information is available, an

ASSYST router can send an IP-encapsulated message directed to its neighbor, thus

skipping the non-ASSYST cloud.

The needed information is obtained through a periodic signaling, aimed at dis-

covering neighbors, establishing a soft-state inside each ASSYST router. This pro-

cess relies on the PathConfiguration message and exploits a similar approach

as the one used by the Resource reSerVation Protocol (RSVP) for the same pur-

pose [57]. Both the encapsulated ASP packet and the enveloping IP-packet have

a Time-To-Live (TTL) field in their respective header. Its value is decreased of a
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unit for each traversed node. In case of non-ASSYST routers, only the external IP

header is processed and the corresponding TTL value decreased. The internal ASP

packet is leaved unchanged, representing an opaque structure in this context. Upon

reception of an encapsulated packet by an ASSYST-compliant router, the difference

between the TTL values provides information on the existence of a non-ASSYST

cloud and the number of non-ASSYST routers crossed. Furthermore, the ASP mes-

sage contains also the IP address of the “neighboring” ASSYST router (which put

it there as well).

5.4.6 Multiple attack sources

In case of multiple attack sources, the protocol has been designed in such a way to

split the traceback process into different instances, one independent of each other,

which go along all the paths involved in the attack. This process goes forward until

approaching as close as possible all the attack sources.

The case in which two different instances reach the same router along the path,

has been explicitly addressed, and is called path merging. The joining router is able

to recognize the attacks as belonging to a single session, and update its internal

structures according to the new discovered information.

5.5 Intrusion detection subsystem

In order to properly work, ASSYST has to be fed by the output data coming from an

Intrusion Detection System. Alert signals trigger the described processes, according

to the picture shown in Fig. 1. Stated the extremely modular structure of this system,

IDS integration inside ASSYST architecture, relies on an ad-hoc communication

interface. Such an interface allows transfer of the anomalous traffic characteristics

toward the ASSYST kernel modules.

Fig. 8 represents the functional principles of the communication interface be-

tween the IDS and the CE components. In particular, our contribution is in the de-

sign and implementation of the following pieces:

• the driver for bridging the kernel and user addressing spaces;

• the IDS output-plugin, which sends to the PCIDS the detected traffic character-

istics through the aforementioned driver;

and the CE components.

In the following, the different phases that characterize the inter-communication

process will be described. These are numbered in Fig. 8. Upon generic anomalous

traffic detection, the output-plugin notifies its characteristics through the PCIDS

driver (1). By means of a shared memory area, the PCIDS collects all the alert

• the mechanisms enabling asynchronous inter-communication between the PCIDS
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Fig. 8 The ASSYST/IDS interface specification

requests (2) and notifies them to the CE (3). Notification processes have an asyn-

chronous nature, thanks to the tasklet kernel technology [58]. When the CE becomes

available, it extracts from the events queue the next alert notification to be managed

(4), and tells the PCIDS to be available to accept new requests (5).

5.6 Traffic classification and intrusion reaction

Fig. 9 shows the ASSYST router infrastructure that has been used for traffic classi-

fication and intrusion reaction.

This infrastructure consists of a kernel module which performs two main func-

tionalities:

• associates anomalous IP flows with the attack session they belong to (Packet

Classifier);

• mitigates attack effects by adopting appropriate traffic scheduling algorithms

and, simultaneously, allows traceback process propagation toward the attack

sources (Security-Aware Traffic Control).

To this purpose, the Linux Traffic Control module has been integrated in ASSYST;

it consists of a collection of tools that enable more complex packet forwarding pro-
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Fig. 9 The PC/SATC internal structure

cesses, replacing the default FIFO management [59]. The most interesting feature

consists in the possibility of dynamically creating IP-packets queuing structures and

using customizable scheduling algorithms, which can be adapted to the attack ses-

sion an ASSYST router might be involved in. Fig. 9 helps to clarify this aspect.

It is straightforward that this mechanisms tailors the defense strategy on the single

attack session characteristics, according to the protection requests (Traffic Shaping

Descriptor) shared with the neighbors routers. In order to achieve this objective, the

following components have been designed: (i) the kernel interfaces for the dynami-

cal allocation of queuing structures and scheduling policies; (ii) the kernel modules

in charge of translating Traffic Shaping descriptors into the activation of the corre-

sponding traffic control modules.

5.7 ASSYST implementation details

The ASSYST components and the ASP protocol have been implemented in C pro-

gramming language and integrated in the 2.4.20 version of the GNU/Linux oper-

ating system kernel [60]. The implementation is released under the General Public

License [61].

In Fig. 10, the implementation details of the ASSYST modules are presented:

N-IDS: represents a generic Network-based Intrusion Detection System, such as

the one presented in the above sections;
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Fig. 10 The ASSYST router architecture inside Linux kernel

PCIDS Driver Interface: represents the interface between kernel and user ad-

dressing spaces; it allows inter-process communication between the chosen IDS

(which runs in user space) with the ASSYST kernel modules;

ASSYST Kernel Modules: the kernel modules which implement the ASSYST

components such as the Coordination Engine (CE), the Authentication Process

(AP), and the Security Reference Monitor (SRM);

Packet Classifier/SATC Kernel Modules: these modules implement IP traffic

classification functionalities, useful to identify anomalous traffic patterns and to

adopt the proper defense strategy;

ASP: this is the network level module which implements both data structures and

communication logic for the ASP protocol.

5.8 ASP protocol implementation details

The implementation of the ASP protocol consisted in the definition of the data struc-

tures, protocol message headers, and communication functionalities. The ASP pro-

tocol has been realized inside the TCP/IP stack of the Linux kernel, at the network

layer. The extension has been plugged-in by adding a new handler in the protocol

demultiplexing section of the Linux kernel. The callback function connected to the

handler, is invoked upon reception of each ASP packet [58].
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5.9 Testing the Approach

In Fig. 11, the testbed used to validate our implementation is shown. It consists of

two ASSYST-enabled routers (say ASSYST 1 and ASSYST 2) and two hosts which

embody the roles of attacker and victim. The IDS module on the routers has been

configured in such a way to consider any ICMP packet as belonging to an attack

session. Hence, a DoS attack was emulated by generating ICMP traffic from the

attacker toward the victim. Fig. 12 shows some obtained results.

Fig. 11 The ASSYST test-bed

6 Conclusions and Future Work

The experimental results allowed to validate our approach to network security; the

overall system provides good performance results in terms of capability in detecting

and reacting to distributed malicious activity.

In particular, the IDS framework showed the possibility of combining real-time

intrusion detection with pattern recognition techniques, keeping the system over-

head under reasonable thresholds and containing the packet loss ratio within certain

boundaries. It has been also experimentally demonstrated on real traffic data that

the proposed detection methodology allows us to obtain a very low false alarm rate,

which is the most important requirement for an effective IDS. Furthermore, the de-

veloped anonymization techniques definitely represent a very interesting tool to use

for collecting network traffic data without violating users’ privacy.

On the side of reaction techniques, contrarily to preventive approaches, ASSYST

provides a reactive and resilient mechanism aimed at isolating attackers and limiting

their range of action as much as possible.

Next steps will consist in both realizing the distributed IDS adopting new detec-

tion techniques, and operating the ASSYST architecture over more complex net-
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Fig. 12 Results obtained by using two ASSYST-enabled routers

work topologies. In this context, an analysis of the system scalability will also be

carried out.

As for the anonimyzer, it has to be noted that one of the main purpose of such

a tool was developed for, is the distribution of traffic traces aimed at the training of

intrusion detection techniques. If there were any attack signatures in the payload,

when its content is substituted by random symbols, such signatures would be lost.

A further functionality we have planned to implement is hence related to this issue.
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Glossary of Terms Used in Security and

Intrusion Detection

3-way handshake Machine A sends a packet with a SYN flag set to Machine B. B

acknowledges A’s SYN with a SYN/ACK. A acknowledges B’s SYN/ACK with an

ACK.

Access Control Access Control ensures that resources are only granted to those

users who are entitled to them.

Access Control List (ACL) A mechanism that implements access control for a

system resource by listing the identities of the system entities that are permitted to

access the resource.

Access Control Service A security service that provides protection of system re-

sources against unauthorized access. The two basic mechanisms for implementing

this service are ACLs and tickets.

Access Management Access Management is the maintenance of access informa-

tion which consists of four tasks: account administration, maintenance, monitoring,

and revocation.

Access Matrix An Access Matrix uses rows to represent subjects and columns to

represent objects with privileges listed in each cell.

Account Harvesting Account Harvesting is the process of collecting all the legiti-

mate account names on a system.

ACK Piggybacking ACK piggybacking is the practice of sending an ACK inside

another packet going to the same destination.

Active Content Program code embedded in the contents of a web page. When the

page is accessed by a web browser, the embedded code is automatically downloaded

and executed on the user’s workstation. Ex. Java, ActiveX (MS)

Activity Monitors Activity monitors aim to prevent virus infection by monitoring

for malicious activity on a system, and blocking that activity when possible.
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Address Resolution Protocol (ARP) Address Resolution Protocol (ARP) is a pro-

tocol for mapping an Internet Protocol address to a physical machine address that is

recognized in the local network. A table, usually called the ARP cache, is used to

maintain a correlation between each MAC address and its corresponding IP address.

ARP provides the protocol rules for making this correlation and providing address

conversion in both directions.

Advanced Encryption Standard (AES) An encryption standard being developed by

NIST. Intended to specify an unclassified, publicly-disclosed, symmetric encryption

algorithm.

Algorithm A finite set of step-by-step instructions for a problem-solving or com-

putation procedure, especially one that can be implemented by a computer.

Applet Java programs; an application program that uses the client’s web browser

to provide a user interface.

network that was built in the early 1970s under contract to the US Government, led

to the development of today’s Internet, and was decommissioned in June 1990.

Asymmetric Cryptography Public-key cryptography; A modern branch of cryp-

tography in which the algorithms employ a pair of keys (a public key and a private

key) and use a different component of the pair for different steps of the algorithm.

Asymmetric Warfare Asymmetric warfare is the fact that a small investment,

properly leveraged, can yield incredible results.

Auditing Auditing is the information gathering and analysis of assets to ensure

such things as policy compliance and security from vulnerabilities.

Authentication Authentication is the process of confirming the correctness of the

claimed identity.

Authenticity Authenticity is the validity and conformance of the original informa-

tion.

Authorization Authorization is the approval, permission, or empowerment for

someone or something to do something.

Autonomous System One network or series of networks that are all under one ad-

ministrative control. An autonomous system is also sometimes referred to as a rout-

ing domain. An autonomous system is assigned a globally unique number, some-

times called an Autonomous System Number (ASN).

Availability Availability is the need to ensure that the business purpose of the sys-

tem can be met and that it is accessible to those who need to use it.

Backdoor A backdoor is a tool installed after a compromise to give an attacker

easier access to the compromised system around any security mechanisms that are

in place.

ARPANET Advanced Research Projects Agency Network, a pioneer packet-switched
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Bandwidth Commonly used to mean the capacity of a communication channel to

pass data through the channel in a given amount of time. Usually expressed in bits

per second.

Banner A banner is the information that is displayed to a remote user trying to

connect to a service. This may include version information, system information, or

a warning about authorized use.

Basic Authentication Basic Authentication is the simplest web-based authentica-

tion scheme that works by sending the username and password with each request.

Bastion Host A bastion host has been hardened in anticipation of vulnerabilities

that have not been discovered yet.

BIND BIND stands for Berkeley Internet Name Domain and is an implementation

of DNS. DNS is used for domain name to IP address resolution.

Biometrics Biometrics use physical characteristics of the users to determine ac-

cess.

Bit The smallest unit of information storage; a contraction of the term ”binary

digit;” one of two symbols”0” (zero) and ”1” (one) - that are used to represent

binary numbers.

Block Cipher A block cipher encrypts one block of data at a time.

Boot Record Infector A boot record infector is a piece of malware that inserts

malicious code into the boot sector of a disk.

Border Gateway Protocol (BGP) An inter-autonomous system routing protocol.

BGP is used to exchange routing information for the Internet and is the protocol

used between Internet service providers (ISP).

Bridge A product that connects a local area network (LAN) to another local area

network that uses the same protocol (for example, Ethernet or token ring).

British Standard 7799 A standard code of practice and provides guidance on how

to secure an information system. It includes the management framework, objectives,

and control requirements for information security management systems.

Broadcast To simultaneously send the same message to multiple recipients. One

host to all hosts on network.

Broadcast Address An address used to broadcast a datagram to all hosts on a given

network using UDP or ICMP protocol.

Browser A client computer program that can retrieve and display information from

servers on the World Wide Web.

Brute Force A cryptanalysis technique or other kind of attack method involving

an exhaustive procedure that tries all possibilities, one-by-one.
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Buffer Overflow A buffer overflow occurs when a program or process tries to store

more data in a buffer (temporary data storage area) than it was intended to hold.

Since buffers are created to contain a finite amount of data, the extra information

- which has to go somewhere - can overflow into adjacent buffers, corrupting or

overwriting the valid data held in them.

Business Continuity Plan (BCP) A Business Continuity Plan is the plan for emer-

gency response, backup operations, and post-disaster recovery steps that will ensure

the availability of critical resources and facilitate the continuity of operations in an

emergency situation.

Business Impact Analysis (BIA) A Business Impact Analysis determines what

levels of impact to a system are tolerable.

Byte A fundamental unit of computer storage; the smallest addressable unit in a

computer’s architecture. Usually holds one character of information and usually

means eight bits.

Cache Pronounced cash, a special high-speed storage mechanism. It can be either

a reserved section of main memory or an independent high-speed storage device.

Two types of caching are commonly used in personal computers: memory caching

and disk caching.

Cache Cramming Cache Cramming is the technique of tricking a browser to run

cached Java code from the local disk, instead of the internet zone, so it runs with

less restrictive permissions.

Cache Poisoning Malicious or misleading data from a remote name server is saved

[cached] by another name server. Typically used with DNS cache poisoning attacks.

Cell A cell is a unit of data transmitted over an ATM network. Certificate-Based

Authentication Certificate-Based Authentication is the use of SSL and certificates

to authenticate and encrypt HTTP traffic.

CGI Common Gateway Interface. This mechanism is used by HTTP servers (web

servers) to pass parameters to executable scripts in order to generate responses dy-

namically.

Chain of Custody Chain of Custody is the important application of the Federal

rules of evidence and its handling.

Authentication Protocol uses a challenge/response authentication mechanism where

the response varies every challenge to prevent replay attacks.

Checksum A value that is computed by a function that is dependent on the contents

of a data object and is stored or transmitted together with the object, for the purpose

of detecting changes in the data.

Cipher A cryptographic algorithm for encryption and decryption.

Challenge-Handshake Authentication Protocol (CHAP) The Challenge-Handshake
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Ciphertext Ciphertext is the encrypted form of the message being sent.

Circuit Switched Network A circuit switched network is where a single continu-

ous physical circuit connected two endpoints where the route was immutable once

set up.

Client A system entity that requests and uses a service provided by another system

entity, called a ”server.” In some cases, the server may itself be a client of some

other server.

Collision A collision occurs when multiple systems transmit simultaneously on the

same wire.

Competitive Intelligence Competitive Intelligence is espionage using legal, or at

least not obviously illegal, means.

Computer Emergency Response Team (CERT) An organization that studies

computer and network INFOSEC in order to provide incident response services

to victims of attacks, publish alerts concerning vulnerabilities and threats, and offer

other information to help improve computer and network security.

Computer Network A collection of host computers together with the sub-network

or inter-network through which they can exchange data.

Confidentiality Confidentiality is the need to ensure that information is disclosed

only to those who are authorized to view it.

Configuration Management Establish a known baseline condition and manage it.

Cookie Data exchanged between an HTTP server and a browser (a client of the

server) to store state information on the client side and retrieve it later for server use.

An HTTP server, when sending data to a client, may send along a cookie, which the

client retains after the HTTP connection closes. A server can use this mechanism

to maintain persistent client-side state information for HTTP-based applications,

retrieving the state information in later connections.

Corruption A threat action that undesirably alters system operation by adversely

modifying system functions or data.

Cost Benefit Analysis A cost benefit analysis compares the cost of implementing

countermeasures with the value of the reduced risk.

Countermeasure Reactive methods used to prevent an exploit from successfully

occurring once a threat has been detected. Intrusion Prevention Systems (IPS) com-

monly employ countermeasures to prevent intruders form gaining further access to

a computer network. Other counter measures are patches, access control lists and

malware filters.

Covert Channels Covert Channels are the means by which information can be

communicated between two parties in a covert fashion using normal system opera-
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tions. For example by changing the amount of hard drive space that is available on

a file server can be used to communicate information.

Cron Cron is a Unix application that runs jobs for users and administrators at

scheduled times of the day.

Crossover Cable A crossover cable reverses the pairs of cables at the other end

and can be used to connect devices directly together.

Cryptanalysis The mathematical science that deals with analysis of a crypto-

graphic system in order to gain knowledge needed to break or circumvent the pro-

tection that the system is designed to provide. In other words, convert the cipher text

to plaintext without knowing the key.

Cryptographic Algorithm or Hash An algorithm that employs the science of

cryptography, including encryption algorithms, cryptographic hash algorithms, dig-

ital signature algorithms, and key agreement algorithms.

Cut-Through Cut-Through is a method of switching where only the header of a

packet is read before it is forwarded to its destination.

Cyclic Redundancy Check (CRC) Sometimes called ”cyclic redundancy code.” A

type of checksum algorithm that is not a cryptographic hash but is used to implement

data integrity service where accidental changes to data are expected.

Daemon A program which is often started at the time the system boots and runs

continuously without intervention from any of the users on the system. The daemon

program forwards the requests to other programs (or processes) as appropriate. The

term daemon is a Unix term, though many other operating systems provide support

for daemons, though they’re sometimes called other names. Windows, for example,

refers to daemons and System Agents and services.

Data Aggregation Data Aggregation is the ability to get a more complete picture

of the information by analyzing several different types of records at once.

Data Custodian A Data Custodian is the entity currently using or manipulating the

data, and therefore, temporarily taking responsibility for the data.

Data Encryption Standard (DES) A widely-used method of data encryption us-

ing a private (secret) key. There are 72,000,000,000,000,000 (72 quadrillion) or

more possible encryption keys that can be used. For each given message, the key

is chosen at random from among this enormous number of keys. Like other private

key cryptographic methods, both the sender and the receiver must know and use the

same private key.

Data Mining Data Mining is a technique used to analyze existing information,

usually with the intention of pursuing new avenues to pursue business.

Data Owner A Data Owner is the entity having responsibility and authority for the

data.
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Data Warehousing Data Warehousing is the consolidation of several previously

independent databases into one location.

Datagram Request for Comment 1594 says, ”a self-contained, independent entity

of data carrying sufficient information to be routed from the source to the destination

computer without reliance on earlier exchanges between this source and destination

computer and the transporting network.” The term has been generally replaced by

the term packet. Datagrams or packets are the message units that the Internet Pro-

tocol deals with and that the Internet transports. A datagram or packet needs to be

self-contained without reliance on earlier exchanges because there is no connection

of fixed duration between the two communicating points as there is, for example, in

most voice telephone conversations. (This kind of protocol is referred to as connec-

tionless.)

Day Zero The ”Day Zero” or ”Zero Day” is the day a new vulnerability is made

known. In some cases, a ”zero day” exploit is referred to an exploit for which no

patch is available yet. (”day one”-¿ day at which the patch is made available).

Decapsulation Decapsulation is the process of stripping off one layer’s headers

and passing the rest of the packet up to the next higher layer on the protocol stack.

Decryption Decryption is the process of transforming an encrypted message into

its original plaintext.

Defacement Defacement is the method of modifying the content of a website in

such a way that it becomes ”vandalized” or embarrassing to the website owner.

Defense In-Depth Defense In-Depth is the approach of using multiple layers of

security to guard against failure of a single security component.

Demilitarized Zone (DMZ) In computer security, in general a demilitarized zone

(DMZ) or perimeter network is a network area (a subnetwork) that sits between

an organization’s internal network and an external network, usually the Internet.

DMZ’s help to enable the layered security model in that they provide subnetwork

segmentation based on security requirements or policy. DMZ’s provide either a tran-

sit mechanism from a secure source to an insecure destination or from an insecure

source to a more secure destination. In some cases, a screened subnet which is used

for servers accessible from the outside is referred to as a DMZ.

Denial of Service The prevention of authorized access to a system resource or the

delaying of system operations and functions.

Dictionary Attack An attack that tries all of the phrases or words in a dictionary,

trying to crack a password or key. A dictionary attack uses a predefined list of words

compared to a brute force attack that tries all possible combinations.

Diffie-Hellman A key agreement algorithm published in 1976 by Whitfield Diffie

and Martin Hellman. Diffie-Hellman does key establishment, not encryption. How-

ever, the key that it produces may be used for encryption, for further key manage-

ment operations, or for any other cryptography.
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Digest Authentication Digest Authentication allows a web client to compute MD5

hashes of the password to prove it has the password.

Digital Certificate A digital certificate is an electronic ”credit card” that establishes

your credentials when doing business or other transactions on the Web. It is issued

by a certification authority. It contains your name, a serial number, expiration dates,

a copy of the certificate holder’s public key (used for encrypting messages and dig-

ital signatures), and the digital signature of the certificate-issuing authority so that a

recipient can verify that the certificate is real.

Digital Envelope A digital envelope is an encrypted message with the encrypted

session key.

Digital Signature A digital signature is a hash of a message that uniquely identifies

the sender of the message and proves the message hasn’t changed since transmis-

sion.

Digital Signature Algorithm (DSA) An asymmetric cryptographic algorithm that

produces a digital signature in the form of a pair of large numbers. The signature

is computed using rules and parameters such that the identity of the signer and the

integrity of the signed data can be verified.

Digital Signature Standard (DSS) The US Government standard that specifies the

Digital Signature Algorithm (DSA), which involves asymmetric cryptography.

Disassembly The process of taking a binary program and deriving the source code

from it.

Disaster Recovery Plan (DRP) A Disaster Recovery Plan is the process of recov-

ery of IT systems in the event of a disruption or disaster.

Discretionary Access Control (DAC) Discretionary Access Control consists of

something the user can manage, such as a document password.

Disruption A circumstance or event that interrupts or prevents the correct opera-

tion of system services and functions.

Distance Vector Distance vectors measure the cost of routes to determine the best

route to all known networks.

Distributed Scans Distributed Scans are scans that use multiple source addresses

to gather information.

Domain A sphere of knowledge, or a collection of facts about some program en-

tities or a number of network points or addresses, identified by a name. On the

Internet, a domain consists of a set of network addresses. In the Internet’s domain

name system, a domain is a name with which name server records are associated

that describe sub-domains or host. In Windows NT and Windows 2000, a domain is

a set of network resources (applications, printers, and so forth) for a group of users.

The user need only to log in to the domain to gain access to the resources, which

may be located on a number of different servers in the network.
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Domain Hijacking Domain hijacking is an attack by which an attacker takes over

a domain by first blocking access to the domain’s DNS server and then putting his

own server up in its place.

Domain Name A domain name locates an organization or other entity on the Inter-

net. For example, the domain name ”www.sans.org” locates an Internet address for

”sans.org” at Internet point 199.0.0.2 and a particular host server named ”www”.

The ”org” part of the domain name reflects the purpose of the organization or en-

tity (in this example, ”organization”) and is called the top-level domain name. The

”sans” part of the domain name defines the organization or entity and together with

the top-level is called the second-level domain name.

Domain Name System (DNS) The domain name system (DNS) is the way that

Internet domain names are located and translated into Internet Protocol addresses.

A domain name is a meaningful and easy-to-remember ”handle” for an Internet

address.

Due Care Due care ensures that a minimal level of protection is in place in accor-

dance with the best practice in the industry.

Due Diligence Due diligence is the requirement that organizations must develop

and deploy a protection plan to prevent fraud, abuse, and additional deploy a means

to detect them if they occur.

DumpSec DumpSec is a security tool that dumps a variety of information about a

system’s users, file system, registry, permissions, password policy, and services.

Dumpster Diving Dumpster Diving is obtaining passwords and corporate directo-

ries by searching through discarded media.

Dynamic Link Library - DLL A collection of small programs, any of which can

be called when needed by a larger program that is running in the computer. The

small program that lets the larger program communicate with a specific device such

as a printer or scanner is often packaged as a DLL program (usually referred to as a

DLL file).

Dynamic Routing Protocol Allows network devices to learn routes. Ex. RIP,

EIGRP Dynamic routing occurs when routers talk to adjacent routers, informing

each other of what networks each router is currently connected to. The routers must

communicate using a routing protocol, of which there are many to choose from. The

process on the router that is running the routing protocol, communicating with its

neighbor routers, is usually called a routing daemon. The routing daemon updates

the kernel’s routing table with information it receives from neighbor routers.

Eavesdropping Eavesdropping is simply listening to a private conversation which

may reveal information which can provide access to a facility or network.

Echo Reply An echo reply is the response a machine that has received an echo

request sends over ICMP.
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Echo Request An echo request is an ICMP message sent to a machine to determine

if it is online and how long traffic takes to get to it.

Egress Filtering Filtering outbound traffic.

Emanations Analysis Gaining direct knowledge of communicated data by moni-

toring and resolving a signal that is emitted by a system and that contains the data

but is not intended to communicate the data.

Encapsulation The inclusion of one data structure within another structure so that

the first data structure is hidden for the time being.

Encryption Cryptographic transformation of data (called ”plaintext”) into a form

(called ”cipher text”) that conceals the data’s original meaning to prevent it from

being known or used.

Ephemeral Port Also called a transient port or a temporary port. Usually is on the

client side. It is set up when a client application wants to connect to a server and is

destroyed when the client application terminates. It has a number chosen at random

that is greater than 1023.

Escrow Passwords Escrow Passwords are passwords that are written down and

stored in a secure location (like a safe) that are used by emergency personnel when

privileged personnel are unavailable.

Ethernet The most widely-installed LAN technology. Specified in a standard,

IEEE 802.3, an Ethernet LAN typically uses coaxial cable or special grades of

twisted pair wires. Devices are connected to the cable and compete for access using

a CSMA/CD protocol.

Event An event is an observable occurrence in a system or network.

Exponential Backoff Algorithm An exponential backoff algorithm is used to adjust

TCP timeout values on the fly so that network devices don’t continue to timeout

sending data over saturated links.

Exposure A threat action whereby sensitive data is directly released to an unau-

thorized entity.

Extended ACLs (Cisco) Extended ACLs are a more powerful form of Standard

ACLs on Cisco routers. They can make filtering decisions based on IP addresses

(source or destination), Ports (source or destination), protocols, and whether a ses-

sion is established.

Extensible Authentication Protocol (EAP) A framework that supports multi-

ple, optional authentication mechanisms for PPP, including clear-text passwords,

challenge-response, and arbitrary dialog sequences.

Exterior Gateway Protocol (EGP) A protocol which distributes routing informa-

tion to the routers which connect autonomous systems.
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False Rejects False Rejects are when an authentication system fails to recognize a

valid user.

Fast File System The first major revision to the Unix file system, providing faster

read access and faster (delayed, asynchronous) write access through a disk cache

and better file system layout on disk. It uses inodes (pointers) and data blocks.

Fault Line Attacks Fault Line Attacks use weaknesses between interfaces of sys-

tems to exploit gaps in coverage.

File Transfer Protocol (FTP) A TCP/IP protocol specifying the transfer of text or

binary files across the network.

Filter A filter is used to specify which packets will or will not be used. It can be

used in sniffers to determine which packets get displayed, or by firewalls to deter-

mine which packets get blocked.

Filtering Router An inter-network router that selectively prevents the passage of

data packets according to a security policy. A filtering router may be used as a

firewall or part of a firewall. A router usually receives a packet from a network and

decides where to forward it on a second network. A filtering router does the same,

but first decides whether the packet should be forwarded at all, according to some

security policy. The policy is implemented by rules (packet filters) loaded into the

router.

Finger A protocol to lookup user information on a given host. A Unix program

that takes an e-mail address as input and returns information about the user who

owns that e-mail address. On some systems, finger only reports whether the user is

currently logged on. Other systems return additional information, such as the user’s

full name, address, and telephone number. Of course, the user must first enter this

information into the system. Many e-mail programs now have a finger utility built

into them.

Fingerprinting Sending strange packets to a system in order to gauge how it re-

sponds to determine the operating system.

Firewall A logical or physical discontinuity in a network to prevent unauthorized

access to data or resources.

Flooding An attack that attempts to cause a failure in (especially, in the security

of) a computer system or other data processing entity by providing more input than

the entity can process properly.

Forest A forest is a set of Active Directory domains that replicate their databases

with each other.

Fork Bomb A Fork Bomb works by using the fork() call to create a new process

which is a copy of the original. By doing this repeatedly, all available processes on

the machine can be taken up.
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Form-Based Authentication Form-Based Authentication uses forms on a web-

page to ask a user to input username and password information.

Forward Lookup Forward lookup uses an Internet domain name to find an IP

address

Forward Proxy Forward Proxies are designed to be the server through which all

requests are made.

Fragment Offset The fragment offset field tells the sender where a particular frag-

ment falls in relation to other fragments in the original larger packet.

Fragment Overlap Attack A TCP/IP Fragmentation Attack that is possible be-

cause IP allows packets to be broken down into fragments for more efficient trans-

port across various media. The TCP packet (and its header) are carried in the IP

packet. In this attack the second fragment contains incorrect offset. When packet is

reconstructed, the port number will be overwritten.

Fragmentation The process of storing a data file in several ”chunks” or fragments

rather than in a single contiguous sequence of bits in one place on the storage

medium.

Frames Data that is transmitted between network points as a unit complete with

addressing and necessary protocol control information. A frame is usually transmit-

ted serial bit by bit and contains a header field and a trailer field that ”frame” the

data. (Some control frames contain no data.)

Full Duplex A type of duplex communications channel which carries data in both

directions at once. Refers to the transmission of data in two directions simultane-

ously. Communications in which both sender and receiver can send at the same

time.

Fully-Qualified Domain Name A Fully-Qualified Domain Name is a server name

with a hostname followed by the full domain name.

Fuzzing The use of special regression testing tools to generate out-of-spec input for

an application in order to find security vulnerabilities. Also see ”regression testing”.

Gateway A network point that acts as an entrance to another network.

Gethostbyaddr The gethostbyaddr DNS query is when the address of a machine

is known and the name is needed.

Gethostbyname The gethostbyname DNS quest is when the name of a machine is

known and the address is needed.

GNU GNU is a Unix-like operating system that comes with source code that can

be copied, modified, and redistributed. The GNU project was started in 1983 by

Richard Stallman and others, who formed the Free Software Foundation.
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Gnutella An Internet file sharing utility. Gnutella acts as a server for sharing files

while simultaneously acting as a client that searches for and downloads files from

other users.

Hardening Hardening is the process of identifying and fixing vulnerabilities on a

system.

Hash Function An algorithm that computes a value based on a data object thereby

mapping the data object to a smaller data object.

Cryptographic Hash Functions hash functions are used to generate a one way

”check sum” for a larger text, which is not trivially reversed. The result of this hash

function can be used to validate if a larger file has been altered, without having to

compare the larger files to each other. Frequently used hash functions are MD5 and

SHA1.

Header A header is the extra information in a packet that is needed for the protocol

stack to process the packet.

Hijack Attack A form of active wiretapping in which the attacker seizes control

of a previously established communication association.

Honey Client see Honeymonkey.

Honey pot Programs that simulate one or more network services that you designate

on your computer’s ports. An attacker assumes you’re running vulnerable services

that can be used to break into the machine. A honey pot can be used to log ac-

cess attempts to those ports including the attacker’s keystrokes. This could give you

advanced warning of a more concerted attack.

Honeymonkey Automated system simulating a user browsing websites. The sys-

tem is typically configured to detect web sites which exploit vulnerabilities in the

browser. Also known as Honey Client.

Hops A hop is each exchange with a gateway a packet takes on its way to the

destination.

Host Any computer that has full two-way access to other computers on the Internet.

Or a computer with a web server that serves the pages for one or more Web sites.

Host-Based ID Host-based intrusion detection systems use information from the

operating system audit records to watch all operations occurring on the host that

the intrusion detection software has been installed upon. These operations are then

compared with a pre-defined security policy. This analysis of the audit trail imposes

potentially significant overhead requirements on the system because of the increased

amount of processing power which must be utilized by the intrusion detection sys-

tem. Depending on the size of the audit trail and the processing ability of the system,

the review of audit data could result in the loss of a real-time analysis capability.

HTTP Proxy An HTTP Proxy is a server that acts as a middleman in the commu-

nication between HTTP clients and servers.
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HTTPS When used in the first part of a URL (the part that precedes the colon

and specifies an access scheme or protocol), this term specifies the use of HTTP

enhanced by a security mechanism, which is usually SSL.

Hub A hub is a network device that operates by repeating data that it receives on

one port to all the other ports. As a result, data transmitted by one host is retrans-

mitted to all other hosts on the hub.

Hybrid Attack A Hybrid Attack builds on the dictionary attack method by adding

numerals and symbols to dictionary words.

Hybrid Encryption An application of cryptography that combines two or more

encryption algorithms, particularly a combination of symmetric and asymmetric en-

cryption.

Hyperlink In hypertext or hypermedia, an information object (such as a word, a

phrase, or an image; usually highlighted by color or underscoring) that points (in-

dicates how to connect) to related information that is located elsewhere and can be

retrieved by activating the link.

Hypertext Markup Language (HTML) The set of markup symbols or codes in-

serted in a file intended for display on a World Wide Web browser page.

Hypertext Transfer Protocol (HTTP) The protocol in the Internet Protocol (IP)

family used to transport hypertext documents across an internet.

Identity Identity is whom someone or what something is, for example, the name

by which something is known.

Incident An incident as an adverse network event in an information system or net-

work or the threat of the occurrence of such an event.

Incident Handling Incident Handling is an action plan for dealing with intrusions,

cyber-theft, denial of service, fire, floods, and other security-related events. It is

comprised of a six step process: Preparation, Identification, Containment, Eradica-

tion, Recovery, and Lessons Learned.

Incremental Backups Incremental backups only backup the files that have been

modified since the last backup. If dump levels are used, incremental backups only

backup files changed since last backup of a lower dump level.

Inetd (xinetd) Inetd (or Internet Daemon) is an application that controls smaller

internet services like telnet, ftp, and POP.

Inference Attack Inference Attacks rely on the user to make logical connections

between seemingly unrelated pieces of information.

Information Warfare Information Warfare is the competition between offensive

and defensive players over information resources.

Ingress Filtering Ingress Filtering is filtering inbound traffic.
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Input Validation Attacks Input Validations Attacks are where an attacker inten-

tionally sends unusual input in the hopes of confusing an application.

Integrity Integrity is the need to ensure that information has not been changed

accidentally or deliberately, and that it is accurate and complete.

Integrity Star Property In Integrity Star Property a user cannot read data of a

lower integrity level then their own.

Internet A term to describe connecting multiple separate networks together.

Internet Control Message Protocol (ICMP) An Internet Standard protocol that is

used to report error conditions during IP datagram processing and to exchange other

information concerning the state of the IP network.

Internet Engineering Task Force (IETF) The body that defines standard Internet

operating protocols such as TCP/IP. The IETF is supervised by the Internet Soci-

ety Internet Architecture Board (IAB). IETF members are drawn from the Internet

Society’s individual and organization membership.

Internet Message Access Protocol (IMAP) A protocol that defines how a client

should fetch mail from and return mail to a mail server. IMAP is intended as a

replacement for or extension to the Post Office Protocol (POP). It is defined in RFC

1203 (v3) and RFC 2060 (v4).

Internet Protocol (IP) The method or protocol by which data is sent from one

computer to another on the Internet.

Internet Protocol Security (IPsec) A developing standard for security at the net-

work or packet processing layer of network communication.

Internet Standard A specification, approved by the IESG and published as an

RFC, that is stable and well-understood, is technically competent, has multiple, in-

dependent, and interoperable implementations with substantial operational experi-

ence, enjoys significant public support, and is recognizably useful in some or all

parts of the Internet.

Interrupt An Interrupt is a signal that informs the OS that something has occurred.

Intranet A computer network, especially one based on Internet technology, that

an organization uses for its own internal, and usually private, purposes and that is

closed to outsiders.

Intrusion Detection A security management system for computers and networks.

An IDS gathers and analyzes information from various areas within a computer

or a network to identify possible security breaches, which include both intrusions

(attacks from outside the organization) and misuse (attacks from within the organi-

zation).
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IP Address A computer’s inter-network address that is assigned for use by the

Internet Protocol and other protocols. An IP version 4 address is written as a series

of four 8-bit numbers separated by periods.

IP Flood A denial of service attack that sends a host more echo request (”ping”)

packets than the protocol implementation can handle.

IP Forwarding IP forwarding is an Operating System option that allows a host to

act as a router. A system that has more than 1 network interface card must have IP

forwarding turned on in order for the system to be able to act as a router.

IP Spoofing The technique of supplying a false IP address.

ISO International Organization for Standardization, a voluntary, non-treaty, non-

government organization, established in 1947, with voting members that are desig-

nated standards bodies of participating nations and non-voting observer organiza-

tions.

Issue-Specific Policy An Issue-Specific Policy is intended to address specific needs

within an organization, such as a password policy.

ITU-T International Telecommunications Union, Telecommunication Standard-

ization Sector (formerly ”CCITT”), a United Nations treaty organization that is

composed mainly of postal, telephone, and telegraph authorities of the member

countries and that publishes standards called ”Recommendations.”

Jitter Jitter or Noise is the modification of fields in a database while preserving the

aggregate characteristics of that make the database useful in the first place.

Jump Bag A Jump Bag is a container that has all the items necessary to respond to

an incident inside to help mitigate the effects of delayed reactions.

Kerberos A system developed at the Massachusetts Institute of Technology that

depends on passwords and symmetric cryptography (DES) to implement ticket-

based, peer entity authentication service and access control service distributed in

a client-server network environment.

Kernel The essential center of a computer operating system, the core that provides

basic services for all other parts of the operating system. A synonym is nucleus. A

kernel can be contrasted with a shell, the outermost part of an operating system that

interacts with user commands. Kernel and shell are terms used more frequently in

Unix and some other operating systems than in IBM mainframe systems.

Lattice Techniques Lattice Techniques use security designations to determine ac-

cess to information.

Layer 2 Forwarding Protocol (L2F) An Internet protocol (originally developed

by Cisco Corporation) that uses tunneling of PPP over IP to create a virtual extension

of a dial-up link across a network, initiated by the dial-up server and transparent to

the dial-up user.
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Layer 2 Tunneling Protocol (L2TP) An extension of the Point-to-Point Tunneling

Protocol used by an Internet service provider to enable the operation of a virtual

private network over the Internet.

Least Privilege Least Privilege is the principle of allowing users or applications

the least amount of permissions necessary to perform their intended function.

Legion Software to detect unprotected shares.

Lightweight Directory Access Protocol (LDAP) A software protocol for enabling

anyone to locate organizations, individuals, and other resources such as files and

devices in a network, whether on the public Internet or on a corporate Intranet.

Link State With link state, routes maintain information about all routers and

router-to-router links within a geographic area, and creates a table of best routes

with that information.

List Based Access Control List Based Access Control associates a list of users

and their privileges with each object.

Loadable Kernel Modules (LKM) Loadable Kernel Modules allow for the adding

of additional functionality directly into the kernel while the system is running.

Log Clipping Log clipping is the selective removal of log entries from a system

log to hide a compromise.

Logic Gate A logic gate is an elementary building block of a digital circuit. Most

logic gates have two inputs and one output. As digital circuits can only understand

binary, inputs and outputs can assume only one of two states, 0 or 1.

Loopback Address The loopback address (127.0.0.1) is a pseudo IP address that

always refer back to the local host and are never sent out onto a network.

MAC Address A physical address; a numeric value that uniquely identifies that

network device from every other device on the planet.

Malicious Code Software (e.g., Trojan horse) that appears to perform a useful or

desirable function, but actually gains unauthorized access to system resources or

tricks a user into executing other malicious logic.

Malware A generic term for a number of different types of malicious code.

Mandatory Access Control (MAC) Mandatory Access Control controls is where

the system controls access to resources based on classification levels assigned to

both the objects and the users. These controls cannot be changed by anyone.

Masquerade Attack A type of attack in which one system entity illegitimately

poses as (assumes the identity of) another entity.

Md5 A one way cryptographic hash function. Also see ”hash functions” and ”sha1”

Measures of Effectiveness (MOE) Measures of Effectiveness is a probability

model based on engineering concepts that allows one to approximate the impact
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a give action will have on an environment. In Information warfare it is the ability to

attack or defend within an Internet environment.

Monoculture Monoculture is the case where a large number of users run the same

software, and are vulnerable to the same attacks.

Morris Worm A worm program written by Robert T. Morris, Jr. that flooded the

ARPANET in November, 1988, causing problems for thousands of hosts.

Multi-Cast Broadcasting from one host to a given set of hosts.

Multi-Homed You are ”multi-homed” if your network is directly connected to two

or more ISP’s.

Multiplexing To combine multiple signals from possibly disparate sources, in or-

der to transmit them over a single path.

NAT Network Address Translation. It is used to share one or a small number of

publically routable IP addresses among a larger number of hosts. The hosts are

assigned private IP addresses, which are then ”translated” into one of the publicaly

routed IP addresses. Typically home or small business networks use NAT to share

a single DLS or Cable modem IP address. However, in some cases NAT is used for

servers as an additional layer of protection.

National Institute of Standards and Technology (NIST) National Institute of

Standards and Technology, a unit of the US Commerce Department. Formerly

known as the National Bureau of Standards, NIST promotes and maintains measure-

ment standards. It also has active programs for encouraging and assisting industry

and science to develop and use these standards.

Natural Disaster Any ”act of God” (e.g., fire, flood, earthquake, lightning, or

wind) that disables a system component.

Netmask 32-bit number indicating the range of IP addresses residing on a sin-

gle IP network/subnet/supernet. This specification displays network masks as hex-

adecimal numbers. For example, the network mask for a class C IP network is dis-

played as 0xffffff00. Such a mask is often displayed elsewhere in the literature as

255.255.255.0.

Network Address Translation The translation of an Internet Protocol address

used within one network to a different IP address known within another network.

One network is designated the inside network and the other is the outside.

Network Mapping To compile an electronic inventory of the systems and the ser-

vices on your network.

Network Taps Network taps are hardware devices that hook directly onto the net-

work cable and send a copy of the traffic that passes through it to one or more other

networked devices.
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Network-Based IDS A network-based IDS system monitors the traffic on its net-

work segment as a data source. This is generally accomplished by placing the net-

work interface card in promiscuous mode to capture all network traffic that crosses

its network segment. Network traffic on other segments, and traffic on other means

of communication (like phone lines) can’t be monitored. Network-based IDS in-

volves looking at the packets on the network as they pass by some sensor. The sensor

can only see the packets that happen to be carried on the network segment it’s at-

tached to. Packets are considered to be of interest if they match a signature.Network-

based intrusion detection passively monitors network activity for indications of at-

tacks. Network monitoring offers several advantages over traditional host-based in-

trusion detection systems. Because many intrusions occur over networks at some

point, and because networks are increasingly becoming the targets of attack, these

techniques are an excellent method of detecting many attacks which may be missed

by host-based intrusion detection mechanisms.

Non-Printable Character A character that doesn’t have a corresponding character

letter to its corresponding ASCII code. Examples would be the Linefeed, which is

ASCII character code 10 decimal, the Carriage Return, which is 13 decimal, or the

bell sound, which is decimal 7. On a PC, you can often add non-printable characters

by holding down the Alt key, and typing in the decimal value (i.e., Alt-007 gets you a

bell). There are other character encoding schemes, but ASCII is the most prevalent.

Non-Repudiation Non-repudiation is the ability for a system to prove that a spe-

cific user and only that specific user sent a message and that it hasn’t been modified.

Null Session Known as Anonymous Logon, it is a way of letting an anonymous

user retrieve information such as user names and shares over the network or connect

without authentication. It is used by applications such as explorer.exe to enumerate

shares on remote servers.

Octet A sequence of eight bits. An octet is an eight-bit byte.

One-Way Encryption Irreversible transformation of plaintext to cipher text, such

that the plaintext cannot be recovered from the cipher text by other than exhaustive

procedures even if the cryptographic key is known.

One-Way Function A (mathematical) function, f, which is easy to compute the

output based on a given input. However given only the output value it is impossible

(except for a brute force attack) to figure out what the input value is.

Open Shortest Path First (OSPF) Open Shortest Path First is a link state routing

algorithm used in interior gateway routing. Routers maintain a database of all routers

in the autonomous system with links between the routers, link costs, and link states

(up and down).

OSI OSI (Open Systems Interconnection) is a standard description or ”reference

model” for how messages should be transmitted between any two points in a

telecommunication network. Its purpose is to guide product implementers so that

their products will consistently work with other products. The reference model de-
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fines seven layers of functions that take place at each end of a communication. Al-

though OSI is not always strictly adhered to in terms of keeping related functions

together in a well-defined layer, many if not most products involved in telecommu-

nication make an attempt to describe themselves in relation to the OSI model. It is

also valuable as a single reference view of communication that furnishes everyone

a common ground for education and discussion.

OSI layers The main idea in OSI is that the process of communication between

two end points in a telecommunication network can be divided into layers, with each

layer adding its own set of special, related functions. Each communicating user or

program is at a computer equipped with these seven layers of function. So, in a given

message between users, there will be a flow of data through each layer at one end

down through the layers in that computer and, at the other end, when the message

arrives, another flow of data up through the layers in the receiving computer and

ultimately to the end user or program. The actual programming and hardware that

furnishes these seven layers of function is usually a combination of the computer

operating system, applications (such as your Web browser), TCP/IP or alternative

transport and network protocols, and the software and hardware that enable you to

put a signal on one of the lines attached to your computer. OSI divides telecommu-

nication into seven layers. The layers are in two groups. The upper four layers are

used whenever a message passes from or to a user. The lower three layers (up to

the network layer) are used when any message passes through the host computer

or router. Messages intended for this computer pass to the upper layers. Messages

destined for some other host are not passed up to the upper layers but are forwarded

to another host. The seven layers are: Layer 7: The application layer...This is the

layer at which communication partners are identified, quality of service is identified,

user authentication and privacy are considered, and any constraints on data syntax

are identified. (This layer is not the application itself, although some applications

may perform application layer functions.) Layer 6: The presentation layer...This is

a layer, usually part of an operating system, that converts incoming and outgoing

data from one presentation format to another (for example, from a text stream into

a popup window with the newly arrived text). Sometimes called the syntax layer.

Layer 5: The session layer...This layer sets up, coordinates, and terminates con-

versations, exchanges, and dialogs between the applications at each end. It deals

with session and connection coordination. Layer 4: The transport layer...This layer

manages the end-to-end control (for example, determining whether all packets have

arrived) and error-checking. It ensures complete data transfer. Layer 3: The network

layer...This layer handles the routing of the data (sending it in the right direction

to the right destination on outgoing transmissions and receiving incoming transmis-

sions at the packet level). The network layer does routing and forwarding. Layer 2:

The data-link layer...This layer provides synchronization for the physical level and

does bit-stuffing for strings of 1’s in excess of 5. It furnishes transmission protocol

knowledge and management. Layer 1: The physical layer...This layer conveys the

bit stream through the network at the electrical and mechanical level. It provides the

hardware means of sending and receiving data on a carrier.
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Overload Hindrance of system operation by placing excess burden on the perfor-

mance capabilities of a system component.

Packet A piece of a message transmitted over a packet-switching network. One of

the key features of a packet is that it contains the destination address in addition to

the data. In IP networks, packets are often called datagrams.

Packet Switched Network A packet switched network is where individual packets

each follow their own paths through the network from one endpoint to another.

Partitions Major divisions of the total physical hard disk space.

Password Authentication Protocol (PAP) Password Authentication Protocol is a

simple, weak authentication mechanism where a user enters the password and it is

then sent across the network, usually in the clear.

Password Cracking Password cracking is the process of attempting to guess pass-

words, given the password file information.

Password Sniffing Passive wiretapping, usually on a local area network, to gain

knowledge of passwords.

Patch A patch is a small update released by a software manufacturer to fix bugs in

existing programs.

Patching Patching is the process of updating software to a different version.

Payload Payload is the actual application data a packet contains.

Penetration Gaining unauthorized logical access to sensitive data by circumvent-

ing a system’s protections.

Penetration Testing Penetration testing is used to test the external perimeter secu-

rity of a network or facility.

Permutation Permutation keeps the same letters but changes the position within a

text to scramble the message.

Personal Firewalls Personal firewalls are those firewalls that are installed and run

on individual PCs.

Pharming This is a more sophisticated form of MITM attack. A users session is

redirected to a masquerading website. This can be achieved by corrupting a DNS

server on the Internet and pointing a URL to the masquerading websites IP. Almost

all users use a URL like www.worldbank.com instead of the real IP (192.86.99.140)

of the website. Changing the pointers on a DNS server, the URL can be redirected

to send traffic to the IP of the pseudo website. At the pseudo website, transactions

can be mimicked and information like login credentials can be gathered. With this

the attacker can access the real www.worldbank.com site and conduct transactions

using the credentials of a valid user on that website.
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Phishing The use of e-mails that appear to originate from a trusted source to trick

a user into entering valid credentials at a fake website. Typically the e-mail and the

web site looks like they are part of a bank the user is doing business with.

Ping of Death An attack that sends an improperly large ICMP echo request packet

(a ”ping”) with the intent of overflowing the input buffers of the destination machine

and causing it to crash.

Ping Scan A ping scan looks for machines that are responding to ICMP Echo Re-

quests.

Ping Sweep An attack that sends ICMP echo requests (”pings”) to a range of IP

addresses, with the goal of finding hosts that can be probed for vulnerabilities.

Plaintext Ordinary readable text before being encrypted into ciphertext or after

being decrypted.

Point-to-Point Protocol (PPP) A protocol for communication between two com-

puters using a serial interface, typically a personal computer connected by phone

line to a server. It packages your computer’s TCP/IP packets and forwards them to

the server where they can actually be put on the Internet.

Point-to-Point Tunneling Protocol (PPTP) A protocol (set of communication

rules) that allows corporations to extend their own corporate network through pri-

vate ”tunnels” over the public Internet.

Poison Reverse Split horizon with poisoned reverse (more simply, poison reverse)

does include such routes in updates, but sets their metrics to infinity. In effect, ad-

vertising the fact that there routes are not reachable.

Polyinstantiation Polyinstantiation is the ability of a database to maintain multiple

records with the same key. It is used to prevent inference attacks.

Polymorphism Polymorphism is the process by which malicious software changes

its underlying code to avoid detection.

Port A port is nothing more than an integer that uniquely identifies an endpoint of

a communication stream. Only one process per machine can listen on the same port

number.

Port Scan A port scan is a series of messages sent by someone attempting to break

into a computer to learn which computer network services, each associated with

a ”well-known” port number, the computer provides. Port scanning, a favorite ap-

proach of computer cracker, gives the assailant an idea where to probe for weak-

nesses. Essentially, a port scan consists of sending a message to each port, one at

a time. The kind of response received indicates whether the port is used and can

therefore be probed for weakness.

Possession Possession is the holding, control, and ability to use information.
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Post Office Protocol, Version 3 (POP3) An Internet Standard protocol by which

a client workstation can dynamically access a mailbox on a server host to retrieve

mail messages that the server has received and is holding for the client. Practical

Extraction and Reporting Language (Perl) A script programming language that is

similar in syntax to the C language and that includes a number of popular Unix

facilities such as sed, awk, and tr.

Preamble A preamble is a signal used in network communications to synchronize

the transmission timing between two or more systems. Proper timing ensures that all

systems are interpreting the start of the information transfer correctly. A preamble

defines a specific series of transmission pulses that is understood by communicating

systems to mean ”someone is about to transmit data”. This ensures that systems

receiving the information correctly interpret when the data transmission starts. The

actual pulses used as a preamble vary depending on the network communication

technology in use.

Pretty Good Privacy (PGP) Trademark of Network Associates, Inc., referring to

a computer program (and related protocols) that uses cryptography to provide data

security for electronic mail and other applications on the Internet.

Private Addressing IANA has set aside three address ranges for use by pri-

vate or non-Internet connected networks. This is referred to as Private Address

Space and is defined in RFC 1918. The reserved address blocks are: 10.0.0.0

to 10.255.255.255 (10/8 prefix) 172.16.0.0 to 172.31.255.255 (172.16/12 prefix)

192.168.0.0 to 192.168.255.255 (192.168/16 prefix)

Program Infector A program infector is a piece of malware that attaches itself to

existing program files.

Program Policy A program policy is a high-level policy that sets the overall tone

of an organization’s security approach.

Promiscuous Mode When a machine reads all packets off the network, regardless

of who they are addressed to. This is used by network administrators to diagnose

network problems, but also by unsavory characters who are trying to eavesdrop on

network traffic (which might contain passwords or other information).

Proprietary Information Proprietary information is that information unique to a

company and its ability to compete, such as customer lists, technical data, product

costs, and trade secrets.

Protocol A formal specification for communicating; an IP address the special set

of rules that end points in a telecommunication connection use when they commu-

nicate. Protocols exist at several levels in a telecommunication connection.

Protocol Stacks (OSI) A set of network protocol layers that work together.

Proxy Server A server that acts as an intermediary between a workstation user and

the Internet so that the enterprise can ensure security, administrative control, and

caching service. A proxy server is associated with or part of a gateway server that
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separates the enterprise network from the outside network and a firewall server that

protects the enterprise network from outside intrusion.

Public Key The publicly-disclosed component of a pair of cryptographic keys used

for asymmetric cryptography.

Public Key Encryption The popular synonym for ”asymmetric cryptography”.

Public Key Infrastructure (PKI) A PKI (public key infrastructure) enables users

of a basically unsecured public network such as the Internet to securely and privately

exchange data and money through the use of a public and a private cryptographic

key pair that is obtained and shared through a trusted authority. The public key

infrastructure provides for a digital certificate that can identify an individual or an

organization and directory services that can store and, when necessary, revoke the

certificates.

Public-Key Forward Secrecy (PFS) For a key agreement protocol based on asym-

metric cryptography, the property that ensures that a session key derived from a set

of long-term public and private keys will not be compromised if one of the private

keys is compromised in the future.

Race Condition A race condition exploits the small window of time between a

security control being applied and when the service is used.

Radiation Monitoring Radiation monitoring is the process of receiving images,

data, or audio from an unprotected source by listening to radiation signals.

Reconnaissance Reconnaissance is the phase of an attack where an attackers finds

new systems, maps out networks, and probes for specific, exploitable vulnerabilities.

Reflexive ACLs (Cisco) Reflexive ACLs for Cisco routers are a step towards mak-

ing the router act like a stateful firewall. The router will make filtering decisions

based on whether connections are a part of established traffic or not.

Registry The Registry in Windows operating systems in the central set of settings

and information required to run the Windows computer.

Regression analysis The use of scripted tests which are used to test software for

all possible input is should expect. Typically developers will create a set of regres-

sion tests that are executed before a new version of a software is released. Also see

”fuzzing”.

Request for Comment (RFC) A series of notes about the Internet, started in 1969

(when the Internet was the ARPANET). An Internet Document can be submitted

to the IETF by anyone, but the IETF decides if the document becomes an RFC.

Eventually, if it gains enough interest, it may evolve into an Internet standard.

Resource Exhaustion Resource exhaustion attacks involve tying up finite re-

sources on a system, making them unavailable to others.
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Response A response is information sent that is responding to some stimulus. Re-

verse Address Resolution Protocol (RARP)

RARP Reverse Address Resolution Protocol is a protocol by which a physical ma-

chine in a local area network can request to learn its IP address from a gateway

server’s Address Resolution Protocol table or cache. A network administrator cre-

ates a table in a local area network’s gateway router that maps the physical machine

(or Media Access Control - MAC address) addresses to corresponding Internet Pro-

tocol addresses. When a new machine is set up, its RARP client program requests

from the RARP server on the router to be sent its IP address. Assuming that an entry

has been set up in the router table, the RARP server will return the IP address to the

machine which can store it for future use.

Reverse Engineering Acquiring sensitive data by disassembling and analyzing the

design of a system component.

Reverse Lookup Find out the hostname that corresponds to a particular IP address.

Reverse lookup uses an IP (Internet Protocol) address to find a domain name.

Reverse Proxy Reverse proxies take public HTTP requests and pass them to back-

end webservers to send the content to it, so the proxy can then send the content to

the end-user.

Risk Risk is the product of the level of threat with the level of vulnerability. It

establishes the likelihood of a successful attack.

Risk Assessment A Risk Assessment is the process by which risks are identified

and the impact of those risks determined.

Risk Averse Avoiding risk even if this leads to the loss of oportunity. For example,

using a (more expensive) phone call vs. sending an e-mail in order to avoid risks

associated with e-mail may be considered ”Risk Averse”

Rivest-Shamir-Adleman (RSA) An algorithm for asymmetric cryptography, in-

vented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman.

Role Based Access Control Role based access control assigns users to roles based

on their organizational functions and determines authorization based on those roles.

Root Root is the name of the administrator account in Unix systems.

Rootkit A collection of tools (programs) that a hacker uses to mask intrusion and

obtain administrator-level access to a computer or computer network.

Router Routers interconnect logical networks by forwarding information to other

networks based upon IP addresses.

Routing Information Protocol (RIP) Routing Information Protocol is a distance

vector protocol used for interior gateway routing which uses hop count as the sole

metric of a path’s cost.
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Routing Loop A routing loop is where two or more poorly configured routers re-

peatedly exchange the same packet over and over.

RPC Scans RPC scans determine which RPC services are running on a machine.

Rule Set Based Access Control (RSBAC) Rule Set Based Access Control targets

actions based on rules for entities operating on objects.

S/Key A security mechanism that uses a cryptographic hash function to generate a

sequence of 64-bit, one-time passwords for remote user login. The client generates

a one-time password by applying the MD4 cryptographic hash function multiple

times to the user’s secret key. For each successive authentication of the user, the

number of hash applications is reduced by one.

Safety Safety is the need to ensure that the people involved with the company,

including employees, customers, and visitors, are protected from harm.

Scavenging Searching through data residue in a system to gain unauthorized

knowledge of sensitive data.

Secure Electronic Transactions (SET) Secure Electronic Transactions is a proto-

col developed for credit card transactions in which all parties (customers, merchant,

and bank) are authenticated using digital signatures, encryption protects the message

and provides integrity, and provides end-to-end security for credit card transactions

online.

Secure Shell (SSH) A program to log into another computer over a network, to

execute commands in a remote machine, and to move files from one machine to

another.

Secure Sockets Layer (SSL) A protocol developed by Netscape for transmitting

private documents via the Internet. SSL works by using a public key to encrypt data

that’s transferred over the SSL connection.

Security Policy A set of rules and practices that specify or regulate how a system

or organization provides security services to protect sensitive and critical system

resources.

Segment Segment is another name for TCP packets.

Sensitive Information Sensitive information, as defined by the federal govern-

ment, is any unclassified information that, if compromised, could adversely affect

the national interest or conduct of federal initiatives.

Separation of Duties Separation of duties is the principle of splitting privileges

among multiple individuals or systems.

Server A system entity that provides a service in response to requests from other

system entities called clients.

Session A session is a virtual connection between two hosts by which network

traffic is passed.
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Session Hijacking Take over a session that someone else has established.

Session Key In the context of symmetric encryption, a key that is temporary or is

used for a relatively short period of time. Usually, a session key is used for a defined

period of communication between two computers, such as for the duration of a

single connection or transaction set, or the key is used in an application that protects

relatively large amounts of data and, therefore, needs to be re-keyed frequently.

SHA1 A one way cryptographic hash function. Also see ”MD5”

Shadow Password Files A system file in which encryption user password are

stored so that they aren’t available to people who try to break into the system.

Share A share is a resource made public on a machine, such as a directory (file

share) or printer (printer share).

Shell A Unix term for the interactive user interface with an operating system. The

shell is the layer of programming that understands and executes the commands a

user enters. In some systems, the shell is called a command interpreter. A shell

usually implies an interface with a command syntax (think of the DOS operating

system and its ”C:¿” prompts and user commands such as ”dir” and ”edit”).

Signals Analysis Gaining indirect knowledge of communicated data by monitoring

and analyzing a signal that is emitted by a system and that contains the data but is

not intended to communicate the data.

Signature A Signature is a distinct pattern in network traffic that can be identified

to a specific tool or exploit.

Simple Integrity Property In Simple Integrity Property a user cannot write data

to a higher integrity level than their own.

Simple Network Management Protocol (SNMP) The protocol governing net-

work management and the monitoring of network devices and their functions. A

set of protocols for managing complex networks.

Simple Security Property In Simple Security Property a user cannot read data of

a higher classification than their own.

Smartcard A smartcard is an electronic badge that includes a magnetic strip or

chip that can record and replay a set key.

Smurf The Smurf attack works by spoofing the target address and sending a ping

to the broadcast address for a remote network, which results in a large amount of

ping replies being sent to the target.

Sniffer A sniffer is a tool that monitors network traffic as it received in a network

interface.

Sniffing A synonym for ”passive wiretapping.”
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Social Engineering A euphemism for non-technical or low-technology means -

such as lies, impersonation, tricks, bribes, blackmail, and threats - used to attack

information systems.

Socket The socket tells a host’s IP stack where to plug in a data stream so that it

connects to the right application.

Socket Pair A way to uniquely specify a connection, i.e., source IP address, source

port, destination IP address, destination port.

SOCKS A protocol that a proxy server can use to accept requests from client users

in a company’s network so that it can forward them across the Internet. SOCKS

uses sockets to represent and keep track of individual connections. The client side

of SOCKS is built into certain Web browsers and the server side can be added to a

proxy server.

Software Computer programs (which are stored in and executed by computer hard-

ware) and associated data (which also is stored in the hardware) that may be dynam-

ically written or modified during execution.

Source Port The port that a host uses to connect to a server. It is usually a number

greater than or equal to 1024. It is randomly generated and is different each time a

connection is made.

Spam Electronic junk mail or junk newsgroup postings.

Spanning Port Configures the switch to behave like a hub for a specific port.

Split Horizon Split horizon is a algorithm for avoiding problems caused by includ-

ing routes in updates sent to the gateway from which they were learned.

Split Key A cryptographic key that is divided into two or more separate data items

that individually convey no knowledge of the whole key that results from combining

the items.

Spoof Attempt by an unauthorized entity to gain access to a system by posing as

an authorized user.

SQL Injection SQL injection is a type of input validation attack specific to

database-driven applications where SQL code is inserted into application queries

to manipulate the database.

Stack Mashing Stack mashing is the technique of using a buffer overflow to trick

a computer into executing arbitrary code.

Standard ACLs (Cisco) Standard ACLs on Cisco routers make packet filtering

decisions based on Source IP address only.

Star Property In Star Property, a user cannot write data to a lower classification

level without logging in at that lower classification level.

State Machine A system that moves through a series of progressive conditions.



Glossary of Terms Used in Security and Intrusion Detection 239

Stateful Inspection Also referred to as dynamic packet filtering. Stateful inspec-

tion is a firewall architecture that works at the network layer. Unlike static packet

filtering, which examines a packet based on the information in its header, stateful in-

spection examines not just the header information but also the contents of the packet

up through the application layer in order to determine more about the packet than

just information about its source and destination.

Static Host Tables Static host tables are text files that contain hostname and ad-

dress mapping.

Static Routing Static routing means that routing table entries contain information

that does not change.

Stealthing Stealthing is a term that refers to approaches used by malicious code to

conceal its presence on the infected system.

Steganalysis Steganalysis is the process of detecting and defeating the use of

steganography.

Steganography Methods of hiding the existence of a message or other data. This

is different than cryptography, which hides the meaning of a message but does not

hide the message itself. An example of a steganographic method is ”invisible” ink.

Stimulus Stimulus is network traffic that initiates a connection or solicits a re-

sponse.

Store-and-Forward Store-and-Forward is a method of switching where the entire

packet is read by a switch to determine if it is intact before forwarding it.

Straight-Through Cable A straight-through cable is where the pins on one side

of the connector are wired to the same pins on the other end. It is used for intercon-

necting nodes on the network.

Stream Cipher A stream cipher works by encryption a message a single bit, byte,

or computer word at a time.

Strong Star Property In Strong Star Property, a user cannot write data to higher

or lower classifications levels than their own.

Sub Network A separately identifiable part of a larger network that typically rep-

resents a certain limited number of host computers, the hosts in a building or geo-

graphic area, or the hosts on an individual local area network.

Subnet Mask A subnet mask (or number) is used to determine the number of bits

used for the subnet and host portions of the address. The mask is a 32-bit value that

uses one-bits for the network and subnet portions and zero-bits for the host portion.

Switch A switch is a networking device that keeps track of MAC addresses at-

tached to each of its ports so that data is only transmitted on the ports that are the

intended recipient of the data.



240 Glossary of Terms Used in Security and Intrusion Detection

Switched Network A communications network, such as the public switched tele-

phone network, in which any user may be connected to any other user through the

use of message, circuit, or packet switching and control devices. Any network pro-

viding switched communications service.

Symbolic Links Special files which point at another file.

Symmetric Cryptography A branch of cryptography involving algorithms that

use the same key for two different steps of the algorithm (such as encryption and

decryption, or signature creation and signature verification). Symmetric cryptogra-

phy is sometimes called ”secret-key cryptography” (versus public-key cryptogra-

phy) because the entities that share the key. Symmetric Key A cryptographic key

that is used in a symmetric cryptographic algorithm.

SYN Flood A denial of service attack that sends a host more TCP SYN packets

(request to synchronize sequence numbers, used when opening a connection) than

the protocol implementation can handle.

Synchronization Synchronization is the signal made up of a distinctive pattern of

bits that network hardware looks for to signal that start of a frame.

Syslog Syslog is the system logging facility for Unix systems.

System Security Officer (SSO) A person responsible for enforcement or adminis-

tration of the security policy that applies to the system.

System-Specific Policy A System-specific policy is a policy written for a specific

system or device.

T1, T3 A digital circuit using TDM (Time-Division Multiplexing).

Tamper To deliberately alter a system’s logic, data, or control information to cause

the system to perform unauthorized functions or services.

TCP Fingerprinting TCP fingerprinting is the user of odd packet header combi-

nations to determine a remote operating system.

TCP Full Open Scan TCP Full Open scans check each port by performing a full

three-way handshake on each port to determine if it was open.

TCP Half Open Scan TCP Half Open scans work by performing the first half of a

three-way handshake to determine if a port is open.

TCP Wrapper A software package which can be used to restrict access to certain

network services based on the source of the connection; a simple tool to monitor

and control incoming network traffic.

TCP/IP A synonym for ”Internet Protocol Suite;” in which the Transmission Con-

trol Protocol and the Internet Protocol are important parts. TCP/IP is the basic com-

munication language or protocol of the Internet. It can also be used as a communi-

cations protocol in a private network (either an Intranet or an Extranet).
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TCPDump TCPDump is a freeware protocol analyzer for Unix that can monitor

network traffic on a wire.

TELNET A TCP-based, application-layer, Internet Standard protocol for remote

login from one host to another.

Threat A potential for violation of security, which exists when there is a circum-

stance, capability, action, or event that could breach security and cause harm.

Threat Assessment A threat assessment is the identification of types of threats that

an organization might be exposed to.

Threat Model A threat model is used to describe a given threat and the harm it

could to do a system if it has a vulnerability.

Threat Vector The method a threat uses to get to the target.

Time to Live A value in an Internet Protocol packet that tells a network router

whether or not the packet has been in the network too long and should be discarded.

Tiny Fragment Attack With many IP implementations it is possible to impose an

unusually small fragment size on outgoing packets. If the fragment size is made

small enough to force some of a TCP packet’s TCP header fields into the second

fragment, filter rules that specify patterns for those fields will not match. If the

filtering implementation does not enforce a minimum fragment size, a disallowed

packet might be passed because it didn’t hit a match in the filter. STD 5, RFC 791

states: Every Internet module must be able to forward a datagram of 68 octets with-

out further fragmentation. This is because an Internet header may be up to 60 octets,

and the minimum fragment is 8 octets.

Token Ring A token ring network is a local area network in which all computers

are connected in a ring or star topology and a binary digit or token-passing scheme

is used in order to prevent the collision of data between two computers that want to

send messages at the same time.

Token-Based Access Control Token based access control associates a list of ob-

jects and their privileges with each user. (The opposite of list based.)

Token-Based Devices A token-based device is triggered by the time of day, so

every minute the password changes, requiring the user to have the token with them

when they log in.

Topology The geometric arrangement of a computer system. Common topologies

include a bus, star, and ring. The specific physical, i.e., real, or logical, i.e., virtual,

arrangement of the elements of a network. Note 1: Two networks have the same

topology if the connection configuration is the same, although the networks may dif-

fer in physical interconnections, distances between nodes, transmission rates, and/or

signal types. Note 2: The common types of network topology are illustrated

Traceroute Traceroute is a tool the maps the route a packet takes from the local

machine to a remote destination.
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Transmission Control Protocol (TCP) A set of rules (protocol) used along with

the Internet Protocol to send data in the form of message units between computers

over the Internet. While IP takes care of handling the actual delivery of the data,

TCP takes care of keeping track of the individual units of data (called packets) that

a message is divided into for efficient routing through the Internet. Whereas the IP

protocol deals only with packets, TCP enables two hosts to establish a connection

and exchange streams of data. TCP guarantees delivery of data and also guarantees

that packets will be delivered in the same order in which they were sent.

Transport Layer Security (TLS) A protocol that ensures privacy between com-

municating applications and their users on the Internet. When a server and client

communicate, TLS ensures that no third party may eavesdrop or tamper with any

message. TLS is the successor to the Secure Sockets Layer.

Triple DES A block cipher, based on DES, that transforms each 64-bit plaintext

block by applying the Data Encryption Algorithm three successive times, using ei-

ther two or three different keys, for an effective key length of 112 or 168 bits.

Triple-Wrapped S/MIME usage: data that has been signed with a digital signature,

and then encrypted, and then signed again.

Trojan Horse A computer program that appears to have a useful function, but also

has a hidden and potentially malicious function that evades security mechanisms,

sometimes by exploiting legitimate authorizations of a system entity that invokes

the program.

Trunking Trunking is connecting switched together so that they can share VLAN

information between them.

Trust Trust determine which permissions and what actions other systems or users

can perform on remote machines.

Trusted Ports Trusted ports are ports below number 1024 usually allowed to be

opened by the root user.

Tunnel A communication channel created in a computer network by encapsulating

a communication protocol’s data packets in (on top of) a second protocol that nor-

mally would be carried above, or at the same layer as, the first one. Most often, a

tunnel is a logical point-to-point link - i.e., an OSI layer 2 connection - created by

encapsulating the layer 2 protocol in a transport protocol (such as TCP), in a net-

work or inter-network layer protocol (such as IP), or in another link layer protocol.

Tunneling can move data between computers that use a protocol not supported by

the network connecting them.

UDP Scan UDP scans perform scans to determine which UDP ports are open.

Unicast Broadcasting from host to host.

Uniform Resource Identifier (URI) The generic term for all types of names and

addresses that refer to objects on the World Wide Web.
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Uniform Resource Locator (URL) The global address of documents and other

resources on the World Wide Web. The first part of the address indicates what pro-

tocol to use, and the second part specifies the IP address or the domain name where

the resource is located. For example, http://www.pcwebopedia.com/index.html .

Unix A popular multi-user, multitasking operating system developed at Bell Labs

in the early 1970s. Created by just a handful of programmers, Unix was designed to

be a small, flexible system used exclusively by programmers.

Unprotected Share In Windows terminology, a ”share” is a mechanism that allows

a user to connect to file systems and printers on other systems. An ”unprotected

share” is one that allows anyone to connect to it.

User A person, organization entity, or automated process that accesses a system,

whether authorized to do so or not.

User Contingency Plan User contingency plan is the alternative methods of con-

tinuing business operations if IT systems are unavailable.

User Datagram Protocol (UDP) A communications protocol that, like TCP, runs

on top of IP networks. Unlike TCP/IP, UDP/IP provides very few error recovery

services, offering instead a direct way to send and receive datagrams over an IP net-

work. It’s used primarily for broadcasting messages over a network. UDP uses the

Internet Protocol to get a datagram from one computer to another but does not divide

a message into packets (datagrams) and reassemble it at the other end. Specifically,

UDP doesn’t provide sequencing of the packets that the data arrives in.

Virtual Private Network (VPN) A restricted-use, logical (i.e., artificial or simu-

lated) computer network that is constructed from the system resources of a relatively

public, physical (i.e., real) network (such as the Internet), often by using encryption

(located at hosts or gateways), and often by tunneling links of the virtual network

across the real network. For example, if a corporation has LANs at several differ-

ent sites, each connected to the Internet by a firewall, the corporation could create

a VPN by (a) using encrypted tunnels to connect from firewall to firewall across

the Internet and (b) not allowing any other traffic through the firewalls. A VPN is

generally less expensive to build and operate than a dedicated real network, because

the virtual network shares the cost of system resources with other users of the real

network.

Virus A hidden, self-replicating section of computer software, usually malicious

logic, that propagates by infecting - i.e., inserting a copy of itself into and becom-

ing part of - another program. A virus cannot run by itself; it requires that its host

program be run to make the virus active.

Vulnerability A flaw or weakness in a system’s design, implementation, or opera-

tion and management that could be exploited to violate the system’s security policy.

War Chalking War chalking is marking areas, usually on sidewalks with chalk,

that receive wireless signals that can be accessed.
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War Dialer A computer program that automatically dials a series of telephone

numbers to find lines connected to computer systems, and catalogs those numbers

so that a cracker can try to break into the systems.

War Dialing War dialing is a simple means of trying to identify modems in a tele-

phone exchange that may be susceptible to compromise in an attempt to circumvent

perimeter security.

War Driving War driving is the process of traveling around looking for wireless

access point signals that can be used to get network access.

Web of Trust A web of trust is the trust that naturally evolves as a user starts to

trust other’s signatures, and the signatures that they trust.

Web Server A software process that runs on a host computer connected to the

Internet to respond to HTTP requests for documents from client web browsers.

WHOIS An IP for finding information about resources on networks.

Windowing A windowing system is a system for sharing a computer’s graphical

display presentation resources among multiple applications at the same time. In a

computer that has a graphical user interface (GUI), you may want to use a number

of applications at the same time (this is called task). Using a separate window for

each application, you can interact with each application and go from one application

to another without having to reinitiate it. Having different information or activities

in multiple windows may also make it easier for you to do your work. A windowing

system uses a window manager to keep track of where each window is located on

the display screen and its size and status. A windowing system doesn’t just manage

the windows but also other forms of graphical user interface entities.

Windump Windump is a freeware tool for Windows that is a protocol analyzer that

can monitor network traffic on a wire.

Wired Equivalent Privacy (WEP) A security protocol for wireless local area net-

works defined in the standard IEEE 802.11b.

Wireless Application Protocol A specification for a set of communication pro-

tocols to standardize the way that wireless devices, such as cellular telephones and

radio transceivers, can be used for Internet access, including e-mail, the World Wide

Web, newsgroups, and Internet Relay Chat.

Wiretapping Monitoring and recording data that is flowing between two points in

a communication system.

World Wide Web (”the Web”, WWW, W3) The global, hypermedia-based col-

lection of information and services that is available on Internet servers and is ac-

cessed by browsers using Hypertext Transfer Protocol and other information re-

trieval mechanisms.
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Worm A computer program that can run independently, can propagate a complete

working version of itself onto other hosts on a network, and may consume computer

resources destructively.

Wrap To use cryptography to provide data confidentiality service for a data object.
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